Voluntary Approaches to Environmental Protection and Resource Conservation: An Economics Perspective

Kathleen Segerson

Department of Economics

University of Connecticut

March 7, 2012

- Unilateral initiatives (self-regulation)
- Negotiated agreements (bilateral, multilateral)
- Public voluntary programs
- (Information disclosure programs)

Some examples

Pollution control/energy conservation:

- Danish energy agreements
- US 33/50 Program
- European washing machine agreement
- OPower home energy reports

Conservation:

- US Conservation Reserve Program and EQIP
- Mexico's Payments for Hydrological Environmental Services (deforestation)
- Fishing cooperatives ("sectors")
- Dolphin-safe tuna

- Cost savings from increased flexibility
- Improved information flows
- Reduced confrontation
- Reduced implementation delays
- Income support

- Ineffective
- Not economically efficient
- Can delay imposition of effective policies
- Payments can be costly (social cost of funds, entry)

Evaluating VAs

Three economic criteria:

1.Effectiveness → did VA lead to an improvement?

Need to compare outcome with a counter factual (hypothetical) outcome/baseline

- Relative to outcome under no policy/no action (BAU)
- Relative to outcome under alternative policy
- 2. Cost-effectiveness -> was it achieved at least cost?
 - At individual level (need flexibility)
 - In aggregate (need equal marginal costs across firms)

University of Connecticut

3. Efficiency → did improvement increase/maximize net benefits (benefits minus costs)?

Aggregate amount of pollution reduction or conservation depends on:

- Number of participants
- Amount of abatement (conservation) undertaken by each participant
- Impact on the number of polluting (resource degrading) individuals or firms

These, in turn, depend on:

- Design issues
- Individual/firm characteristics
- Market structure

<u>Design Issue 1:</u> <u>Participation Incentives</u>

Two key features of VAs:

1.Participation is not compulsory and cannot be enforced by law

2.Individuals/firms only participate if they feel it is in their best interest (as they define it)

→ Need to consider participation incentives ("participation constraint")

<u>Design Issue 1:</u> <u>Participation Incentives (cont.)</u>

Motives for participation:

- Environmental stewardship
 - "green preferences"
 - Social norms
- Market-based incentives
 - Through input markets (e.g., suppliers, capital markets)
 - Through output markets (e.g., "green" demand or consumer protection – public vs. private goods)
- Benefits from cooperation
 - Due to oligopolistic market structure (e.g., product-based VAs)
 - Due to "tragedy of commons" (e.g., fisheries)

<u>Design Issue 1:</u> <u>Participation Incentives (cont.)</u>

Motives for participation (cont.):

- Incentive payments (from governments, NGOs, individuals): "Payments for Ecosystem/Environmental Services" (PES)
- Regulatory threats/exemptions
 - Credibility of threat

<u>Design Issue 1:</u> <u>Participation Incentives (cont.)</u>

General principle:

Participation incentives depend not only on the benefits of participation but also on the costs of participation (i.e., obligations under VA)

- there is often a tradeoff, i.e., greater obligations lead to lower participation, and vice versa
- → Need to consider both simultaneously

<u>Design Issue 2:</u> <u>Stringency of Requirements (Target)</u>

When regulator is involved in designing VA, it must be mutually beneficial → target must lie between:

- (1)Maximum amount an individual/firm would be willing to undertake voluntarily, and
- (2)Minimum amount regulator would be willing to accept

These depend on expected outcomes/returns for both if VA fails, i.e.,, outcomes under alternatives

University of Connecticut

→ can influence outcome of VA not only through design of VA but also through alternatives

<u>Design Issue 2:</u> <u>Stringency of Requirements (cont.)</u>

When VA involves "sale" of environmental services, sale must be mutually beneficial → target must be set so that:

(1)Maximum amount purchaser would be willing to pay exceeds

(2) Minimum amount provider would be willing to accept

<u>Design Issue 3:</u> <u>Practice vs. Performance-based VAs</u>

Targets (and compliance) can be based on:

- 1. Inputs: actions or practices (design stds), or
- 2. Outputs: environmental performance/outcome (performance stds)

General principles:

- 1. Performance standards are generally more efficient than design standards
 - More flexible → more cost-effective
 - Less opportunity for shifting/avoidance
 - Promote innovation and technology adoption
- 2. Standards should be as closely linked to objectives as possible

<u>Design Issue 3:</u> <u>Practice vs. Performance based VAs</u>

Challenges in setting performance standards:

- Monitoring performance can be difficult,
 depending on context (e.g., emissions vs. species conservation)
- Lack of control over other factors affecting performance could dampen incentives
- Uncertainty would generate risk for participants
 - → negative welfare effects if participants are risk averse

Design Issue 4: Targeting

Heterogeneity regarding benefits and costs

need to target incentives

Possible approaches:

- 1. Cost targeting
- 2. Benefit targeting
- 3. Benefit-cost targeting
 - More efficient
 - Requires more information

Design Issue 4: Targeting (cont.)

Issues:

Changes in benefits and costs over time
 need to adjust incentives/targeting over time

 Asymmetric information about benefits and/or costs → need to induce revelation of information increases cost to regulator

Design Issue 5: Additionality

Ensure that realized actions or outcomes would not have been realized without VA

- Equity issues ("getting something for nothing")
- Efficiency issues
 - Inefficient use of scarce resources
 - Assessment of benefits and costs and stringency of target

Design Issue 6: Slippage/Leakage

VA can induce increased degradation outside the program, stemming from:

- Substitution of production from enrolled to nonenrolled entities/activities
- Intensification of damaging activities
- Output price effects from decreases in supply or increases in demand (wealth effects)
- Payment effects that induce entry or deter exit from the market

<u>Design Issue 7:</u> <u>Individual vs. Group VAs</u>

Issues regarding group VAs:

- Free-riding
- Strategic interaction, including collaboration/collusion
- Multiple equilibria and coordination
- Communication/information sharing
- Risk pooling

<u>Design Issue 8:</u> <u>Monitoring and Enforcement</u> <u>(if not self-enforcing)</u>

Requires:

- Observability
- Accountability
- Credible sanctions/consequences for noncompliance

<u>Design Issue 9:</u> <u>Distributional Impacts</u>

Differential impacts can be evaluated based on:

- Size groups (e.g., small vs. large firms)
- Income groups (e.g., poor vs. wealthier farmers)
- Factor markets (e.g., labor vs. capital)
- Price effects (e.g., consumers vs. producers)
- Geographic regions (e.g., rural vs. urban, north vs. south)

Summary of Necessary Conditions for Success

- Sufficiently strong participation incentives for targeted population (based on benefits and costs)
- Clearly identified standards for behavior or performance that ensure additionality and avoid slippage
- Sufficient monitoring to determine voluntary compliance with standards
- Ability to reduce free-riding

Conclusion so far:

- (1) When conditions above are met, VAs can be effective in generating environmental or conservation improvements.
- (2) When these conditions do not hold, a VA is not likely to be effective.

Empirical evidence is consistent with this, i.e., it is mixed: Some VAs appear to have been effective, while others have not

European Washing Machine Agreement

- 1996: major European producers/importers of washing machines collectively agree not to produce/import low efficiency models
- 1997-2002: share of high efficiency models increases from 51% to 83%
- 2002: commitment is renewed for 2002-2008
- 2007: members announce will not be renewed again; call for mandatory efficiency standards instead

University of Connecticut

Predictions from Economic Theory

(Ahmed and Segerson, Resource and Energy Economics, 2011)

- Unilateral commitment by a single firm to restrict or eliminate sales on low efficiency products will reduce firm's profits
- However, collective modest restrictions can increase profits, depending on:
 - Stringency of the required reductions
 - Relative performance of "green" product
 - Size of industry (extent of competition)
 - Number of firms that commit and adhere to the agreement (extent of free-riding)
- Firms have an incentive to cheat on the agreement → need some form of enforcement

University of Connecticut

Statistical Evidence of Effectiveness: Key challenge

- Need to determine (unobservable) counter-factual
- Need to compare performance of "treatment" group with performance of "control" group
- Need to control for other possible explanations of observed outcomes:
 - Contemporaneous changes in conditions that affect outcomes (e.g., market conditions, technology, regulations)
 - Differences in characteristics of participants and nonparticipants, due to self-selection or targeting

(Greenstone and Gayer, 2009; Pattanayak et al., 2010,)

33/50 Program

(Bi and Khanna, Land Economics, 2012)

- Established in 1991
- Goal: Reduce aggregate releases of 17 toxic chemicals by 33% by 1992 and by 50% by 1995, relative to 1988 baseline
- Firms were invited to participate and could choose own reductions
- Results reported by EPA: aggregate releases decreased by 55% by 1995 → "success"
- 2 of 17 chemicals were being phased out under Montreal Protocol

University of Connecticut

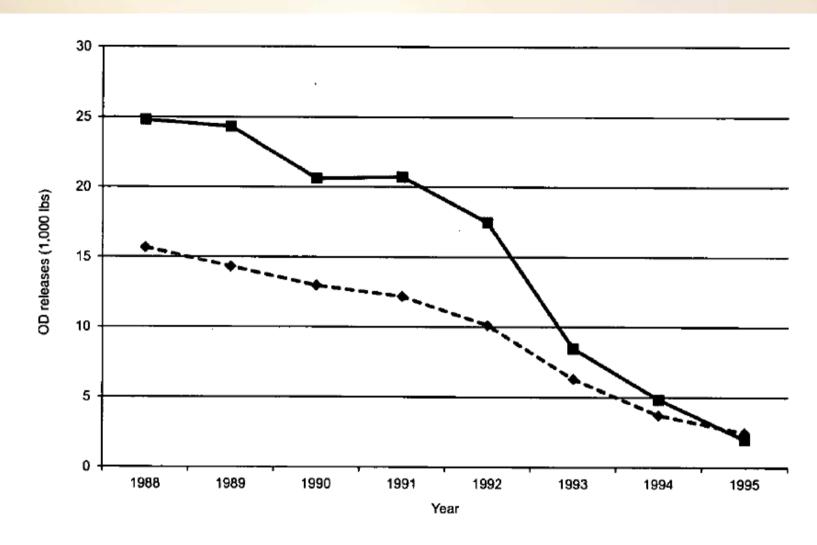


FIGURE 1 Average Ozone Depleting Chemical Releases, 1988–1995

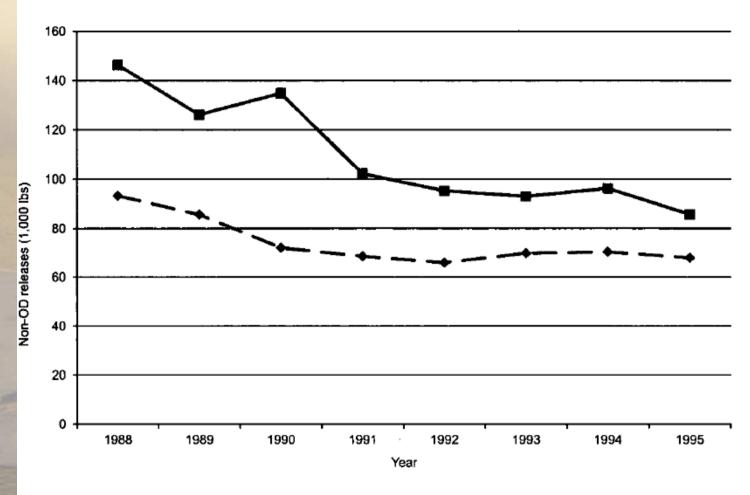


FIGURE 2
Average Releases for Non-Ozone Depleting Chemicals, 1988–1995

33/50 Program: Methodology

(Bi and Khanna, 2012)

- Facility level data on releases and characteristics for participants and non-participants
- 2-stage estimation (to allow for endogenous participation decision at facility level)
- 8,756 facilities and 4,123 parent companies (34,339 total observations)
- Include time trend
- Separate impact analysis for chemicals subject to Montreal Protocol

33/50 Program: Findings

(Bi and Khanna, 2012)

- Rate of reduction across all chemicals was 18.8% to 23.7% higher for participants than non-participants, even after accounting for
 - Reductions prior to program
 - Downward trend in releases even in absence of program
- Rate of reduction for ozone-depleting chemicals was not significantly different across participants and nonparticipants
- Conducting analysis at facility-level is critical (modeling participation at firm level suggest impacts of only 5.1-6.6%

<u>Mexico's Payments for Hydrological Services</u> (PHAS) Program

(Alix-Garcia, et al., Working Paper, 2011)

- Government program that pays landowners to maintain forest cover on enrolled land.
- Aim: decrease deforestation → promote hydrological services, carbon sequestration, biodiversity, etc.
- 2003-2009: 2.27 million hectares enrolled

Concerns:

- Additionality: Paying landowners who would have maintained forest cover anyway?
- Slippage: Increased deforestation on other (non-enrolled) land, due to:
 - Substitution effects
 - Output price effects

Mexico's PSAH: Methodology

(Alix-Garcia et al, 2011)

- Parcel-level data for 2004 (352 recipients, 462 non-recipients)
- Construct control group based on matches from applicant pool based on region, tenure-type, and other observables such as land characteristics (e.g., slope, elevation)
- Test for substitution (by comparing deforestation rates in non-enrolled portions of enrolled properties to those of matched control properties)
- Test for output price slippage (by comparing deforestation on un-enrolled land in areas
 with high and low total enrollment

Mexico's PSAH: Findings

(Alix-Garcia et al, 2011)

- Between 2003-2006, program decreased average percentage of land deforested by 1.2 percentage points
- Given base of 2.4% deforestation over period, this constitutes a 50% reduction
- Program had significant relative impact but small absolute impact, because of low baseline rate
- Evidence of heterogeneous substitution slippage based on wealth

SDWA Reporting Requirements

(Bennear and Olmstead, JEEM, 2008)

- US Safe Drinking Water Act requires reporting of detected contaminants and violations, beginning in 1998
- Requirements differ by size of water suppliers:
 - 10,000+ must mail reports directly to households
 - Smaller suppliers must post but do need not mail

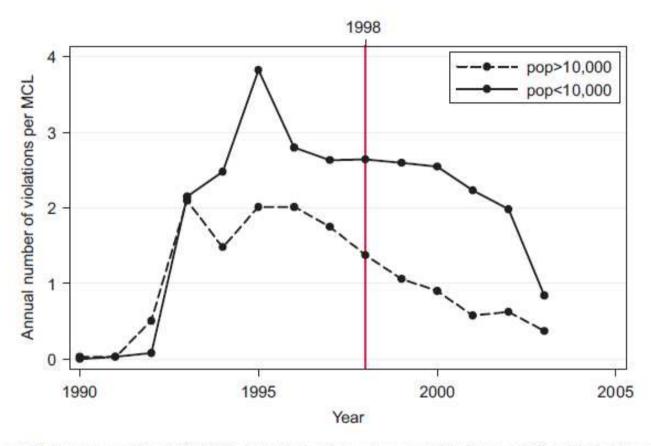


Fig. 1. Total violations per MCL by water suppliers, 1990–2003. Note: Each point graphs annual violations per MCL, splitting MA water suppliers by system size at the 10,000-person CCR mailing threshold.

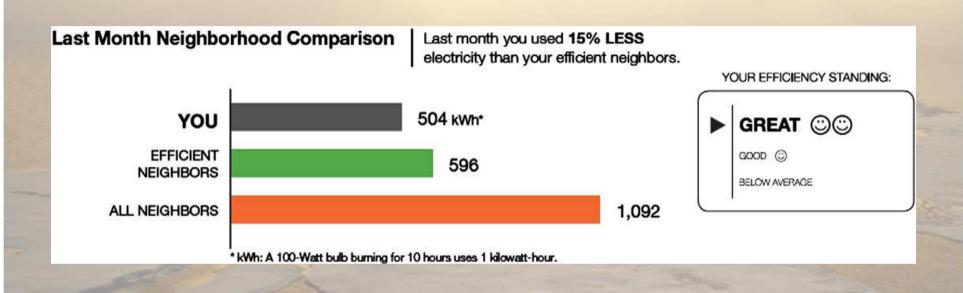
SDWA Requirement: Methodology

(Bennear and Olmstead, 2008)

- Panel data on violations and supplier characteristics for 517 water suppliers in MA from 1990-2003
- Treatment group: Large suppliers (10,000+)
- Control group: Small suppliers
- Primary: Difference-in-difference estimation
- Test for impact of new MCL regulations

(Bennear and Olmstead, 2008)

 Requirement to mail reports to households reduced total violations by about 30-44%, and health violations by about 40-57%



OPOWER Program

(Allcott, Journal of Public Economics, 2011)

- OPower has contracts with 47 utilities in 21 states
- Randomized set of households sent "Home Energy Reports" comparing their usage to usage by similar neighbors, and suggesting ways to reduce energy use
- Purpose: foster energy conservation through social norms

Home energy reports: social comparison module

Home energy reports: actions steps module

Action Steps

Personalized tips chosen for you based on your energy use and housing profile

Quick Fixes

Things you can do right now

Adjust the display on your TV

New televisions are originally
configured to look best on the
showroom floor—at a setting
that's generally unnecessary for
your home.

Changing your TV's display settings can reduce its power use by up to 50% without compromising picture quality. Use the "display" or "picture" menus on your TV: adjusting the "contrast" and "brightness" settings have the most impact on energy use.

Dimming the display can also extend the life of your television.

SAVE UP TO

\$40 PER TV PER YEAR

Smart Purchases

Save a lot by spending a little

☐ Install occupancy sensors Have trouble remembering to turn the lights off? Occupancy sensors automatically switch them off once you leave a room—saving you worry and money.

Sensors are ideal for rooms people enter and leave frequently (such as a family room) and also areas where a light would not be seen (such as a storage area).

Wall-mounted models replace standard light switches and they are available at most hardware stores.

\$20 PER YEAR

Great Investments

Big ideas for big savings

Save money with a new clothes washer

Washing your clothes in a machine uses significant energy, especially if you use warm or hot water cycles.

In fact, when using warm or hot cycles, up to 90% of the total energy used for washing clothes goes towards water heating.

Some premium-efficiency clothes washers use about half the water of older models, which means you save money. SMUD offers a rebate on certain washers—visit our website for more details.

SAVE UP TO

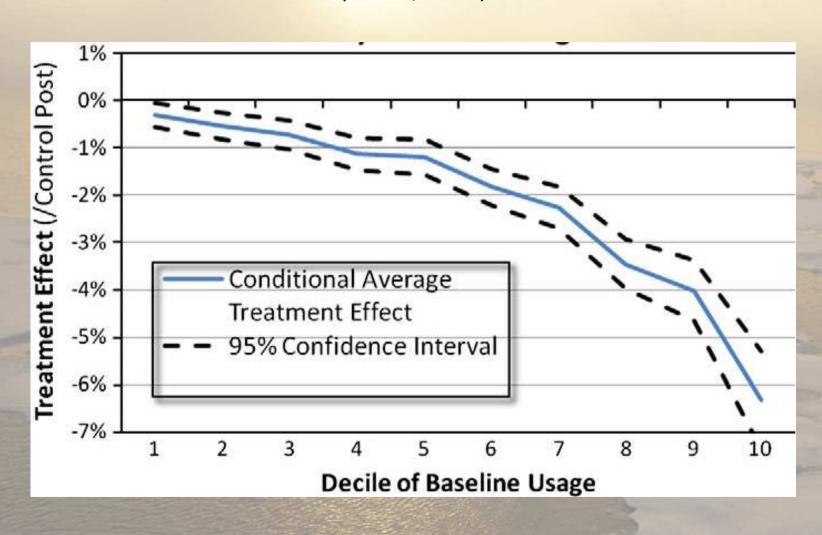
\$20 PER YEAR

OPower Program: Methodology

(Allcott, 2011)

- Used individual household data from 17 experiments across U.S.
- Includes 22 million utility bills for 588,446 households for treatment group (received reports) and control group (no reports)
- Also includes household-level characteristics
- Estimate average treatment effect using difference-in-difference approach

OPower Program: Findings


(Allcott, 2011)

- Average Treatment Effect: 2% reduction in energy use
- Increased frequency (monthly vs. quarterly reports) increases ATE by 0.5%
- Based on short run price elasticity of -0.1 to -0.18, impact is equivalent to impact of a short run price increase of 11% to 20%
- Effects vary by decile groups
 - 6.3% for highest decile consumption groups
 - 0.3% for lowest decile consumption groups

Effects of Baseline Usage Decline

(Alcott, 2011)

Insights from Behavioral Economics?

Theoretical models of VAs are all based on neoclassical model of rational choice.

What is role of:

- Social norms (Allcott, 2012)
- Quasi-hyperbolic discounting (Heutel, 2011)
- Temptation (Tsvetanov and Segerson, 2012)

