Accounting for Sustainable Development

Karl-Göran Mäler Beijer Institute Royal Swedish Academy of Sciences

The meaning of the English word "sustain"

- 1. to keep in existence, maintain
- 2. to provide for the support of
- 3. to support from below
- 4. to strengthen the spirits, courage
- 5. to bear up against, endure, withstand
- 6. to undergo or suffer loss etc
- 7. to uphold the validity or justice
- 8. to confirm, corroborate

Sustainable development

Sustainable development is

... development that meets the needs of the present without compromising the ability of the future to meet their own need.

(Our Common Future, 1987)

Interpretation

Sustainable development is development that maintains or sustains social welfare

What is social welfare?

- An individual's wellbeing in one period is determined by
 - consumption
 - ordinary consumption
 - amenities
 - health
- a measure of this concept of wellbeing is called utility
- Social welfare (W) = present value of the future stream of utility

Social welfare

$$W_0 = U(C^0) + \frac{U(C^1)}{(1+\delta)} + \frac{U(C^2)}{(1+\delta)^2} + \dots$$

 C^{0} consumption in year 0, the first period, C¹ consumption in year 1, etc δ utility discount rate

Ramsay equation

$$r = \delta + g\eta$$

- r consumption discount rate
- δ utility discount rate
- g consumption growth rate
- η elasticity of the marginal utility of consumption

Sustainable development

Social welfare must not decrease over time

 $W_{t+1} - W_t \ge 0$

for all t = 0, 1, 2, ...

What determines the social welfare?

- Stocks of assets
 - man made capital stocks buildings, machines, infrastructure
 - man made knowledge, that is, human capital
 - natural capital
- Technology
 - human capital
- Institutions
 - rules of the game

Resource allocation mechanism

Prediction of future consumption through resourace allocation mechanisms

$$C^{t} = \alpha_{C}(K_{1}^{0}, K_{2}^{0}, ..., K_{n}^{0}, t)$$
$$K^{t} = \alpha_{K}((K_{1}^{0}, K_{2}^{0}, ..., K_{n}^{0}, t)$$

Sustainable development

- Productive resources must be given to future generations in such amounts that their social welfare is not less than ours
- Thus, total investment in all assets (genuine investment) must be positive
- If investment is negative in some sectors, it must be sufficiently positive in others to guarantee that genuine investment is positive

Accounting prices

- How do we aggregate changes in the stock of salmon, stock of vehicles, stock of buildings?
 By using accounting prices as weights!
- 2. The accounting price is the change in the social welfare from a marginal change in the stock today
- 3. The accounting price may be equal to or may differ from the corresponding market price
- 4. There is a huge literature on estimating accounting prices

Accounting price

Sustainable development

$$W^{t+1} - W^{t} = \sum_{i=1}^{n} p_{i}^{t} (K_{i}^{t+1} - K_{i}^{t}) + v_{t}$$

 $\sum_{i=1}^{n} p_i^{t} (K_i^{t+1} - K_i^{t}) : Genuine investment (World Bank)$

v_t : Drift Term (Dasgupta, Mäler)

Population Change Social Welfare Function

Population changes

If exogenous population growth rate is constant, and if there is constant return to scale.

then, the value function will be a function of capital per capita, and the sustainability criteria becomes:

$$W^{t+1} - W^{t} = \sum_{i=1}^{n} p_{i}^{t} (k_{i}^{t+1} - k_{i}^{t}) + v_{t}$$

Table 1: Genuine Investment and Components as Percentage of GDP							
			Natural resource depletion				
	Domestic		Damage				
	Net	Education	from CO ₂	Energy	Mineral	Net forest	Genuine
Country	Investment	Expenditure	emissions	depletion	depletion	depletion	investment
Bangladesh							
1973-2001	7.89	1.53	0.25	0.61	0.00	1.41	7.14
India							
1970-2001	11.74	3.29	1.17	2.89	0.46	1.05	9.47
Nepal							
1970-2001	14.82	2.65	0.20	0.00	0.30	3.67	13.31
Pakistan							
1970-2001	10.92	2.02	0.75	2.60	0.00	0.84	8.75
China							
1982-2001	30.06	1.96	2.48	6.11	0.50	0.22	22.72
SubSaharan Africa							
1974-82; 1986-2001	3.49	4.78	0.81	7.31	1.71	0.52	-2.09
Middle East &							
North Africa							
1976-89; 1991-2001	14.72	4.70	0.80	25.54	0.12	0.06	-7.00
United Kingdom							
1971-2001	3.70	5.21	0.32	1.20	0.00	0.00	7.38
United States							
1970-2001	5.73	5.62	0.42	1.95	0.05	0.00	8.94

Table 2: Growth Rates of Per-Capita Genuine Wealth (1) (2) (3) (4) (5) (6) (7) Growth Rate of Per-**Growth Rate** Growth of Per-Capita Capita Genuine Rate of Genuine Genuine Growth Investment Unadjusted **Population** Wealth TFP Wealth Rate of as Percent Genuine Growth -before TFP -after TFP **Per-Capita** Growth of GDP Wealth Rate Adjustment Rate Adjustment GDP Country Bangladesh 7.14 1.07 2.16 -1.09 0.81 0.30 1.88 India 9.47 1.42 1.99 -0.57 0.64 0.54 2.96 Nepal 13.31 2.00 2.24 -0.24 0.51 0.63 1.86 Pakistan 8.75 1.31 2.66 -1.35 1.13 0.59 2.21 China 22.72 3.41 1.35 2.06 3.64 8.33 7.77 Sub-Saharan Africa -2.09 -0.31 2.74 -3.05 0.28 -2.58 -0.01 Middle East and N. Africa -7.09 2.37 -0.23 -1.06 -3.43 -3.82 0.74 United Kingdom 7.38 1.48 0.18 1.30 0.58 2.29 2.19 **United States** 8.94 1.79 1.07 0.72 0.02 0.75 1.99

Accounting for climate A simple climate model

$$\frac{dK_{\tau}}{d\tau} = f(K_{\tau}, E_{\tau}, N_{\tau}) - C_{\tau}$$

$$U_{\tau} = N_{\tau}\varphi\left(\frac{C_{\tau}}{N_{\tau}}, T_{\tau}\right)$$

$$W_{t} = \frac{\sum_{\tau=t}^{\infty} \frac{N_{\tau}\varphi\left(\frac{C_{\tau}}{N_{\tau}}, T_{\tau}\right)}{(1+\delta)^{\delta(\tau-t)}}}{\sum_{\tau=t}^{\infty} \frac{N_{\tau}}{(1+\delta)^{\tau-t}}}$$

Accounting price for climate

$$\frac{\partial W_{t}}{\partial Q_{t}} = \frac{\sum_{\tau=t}^{\infty} \left[N_{\tau} \frac{\partial U}{\partial C_{\tau}} \frac{\partial C_{\tau}}{\partial Q_{t}} + \frac{\partial U}{\partial T_{\tau}} \frac{\partial T_{\tau}}{\partial Q_{t}} \right]}{(1+\delta)^{\tau-t}}$$

$$\frac{\partial W_{t}}{\partial Q_{t}} = \frac{\sum_{\tau=t}^{\infty} \frac{N_{\tau}}{(1+\delta)^{\tau-t}}}{\sum_{\tau=t}^{\infty} \frac{N_{\tau}}{(1+\delta)^{\tau-t}}}$$

$$M D_{\tau} = \frac{\partial U}{\partial C_{\tau}} \frac{\partial C_{\tau}}{\partial Q_{t}} + \frac{\partial U}{\partial T_{\tau}} \frac{\partial T_{\tau}}{\partial Q_{t}}$$

$$dQ_t = E_t - vQ_t$$

Accounting price for climate

- The accounting price for the stock of green house gases equals the marginal damage from emissions!
- There are a bewildering number of different estimates of this marginal damage
- They vary from almost zero to over hundred dollars per ton CO₂
- Stern review suggest \$ 20, but later Stern has suggested \$ 40 dollars per ton

Accounting price for climate – several countries

- Whose welfare?
 - our own country or all countries
- Effects from all countries or only our own country?
- Most reasonable:
 - our own welfare and effects from total emissions!
- Thus, component of genuine investment equals

$$p_t dQ_t^{tot}$$

A final example

- Botswana and Namibia similar:
 - Both very dry countries water is very valuable
 - Both have diamonds
 - Botswana has cattle, and tourism
 - Namibia has forests, fisheries, and tourism
- Both have similar development of GDP per capita

A final example

- Wealth per capita has been going up in Botswana but going down in Namibia
- Why?
- Botswana has a legislation that requires that rent on natural capital <u>must</u> be reinvested in other forms of capital!
 - human capital education
 - investment in small enterprises
- In Namibia, the rent on natural capital has been consumed!
 - partly through expenditures for having an army in Congo

Final conclusion

Wealth matters more than income!

Literature references

- Dasgupta, Marglin, and Sen, 1972, *Guidelines for Project Evaluation*, New York, United Nations (UNIDO)
- Dasgupta, Mäler, 2000, Net National Product, Wealth, and Social Well-Being, Environment and Development Economics 5, 69-93
- Arrow, Dasgupta, and Mäler, 2003, Evaluating Projects and Assessing Sustainable Development in Imperfect Economies, Environment and Resource Economics, 26:499-685
- Arrow, Dasgupta, Goulder, et al, 2004, Journal of Economic Perspectives, 18:3 147-172
- Mäler, Aniyar, 2009, Accounting for ecosystems, forthcoming
- Freeman, A. M. III 2003, The Measurement of Environmental And Resource Values: Theory and Methods, 2nd edition, Resources for the Future Inc. Washington DC
- Dasgupta. 2008, P. *Discounting Climate Change*, Forthcoming in Journal of Risk and Uncertainty