The Costs and Benefits of Climate Policy: The Discount rate and Changing Relative Prices

Det Miljökonomiska Råd, Skodsborg Sept 1
Thomas Sterner
Economics; Gothenburg
President EAERE

Historical variation of atmospheric CO_{2}-concentration

GLOBALLY AVERAGED CO $\mathbf{2}_{2}$ 1983-2005
CO_{2} (ppm)

Stock goal and flow goal

Stock goal and flow goal

FLOW of emissions

STOCK of pollutants

Historic + future emissions

Breakdown by country

- Overall World reduction by 30-75\% 2050
- Or 50-100\% by 2100
- Emissions 6 Gtons to 3
- Pop increase from 6-10 G Capita
- Per capita decrease from 1 ton to 300 Kg
- For EU this could be 2 tons to 300 Kg
- Official goals now hovering 20-40\% 2020
- (80% by $2050=55 \%$ by 2025)

Per capita targets (EU)

EU per capita emissions targets towards 350,450 and 550 ppm

Per capita targets (China)

IPPC 4 and Stern

- Climate change anthropogenic
- Costs of doing nothing considerable
- Climate change \rightarrow costs $\sim[5-20 \%]$ of GDP
- Costs of action smaller ~1\%
- Stern Review has had PROFOUND Effect

Even Schwarzenegger

Figure 3-1: Recent GHG emissions ${ }^{1}$ in California and Governor Schwarzenegger's goals.

Even Schwarzenegger

Figure 3-1: Recent GHG emissions ${ }^{1}$ in California and Governor Schwarzenegger's goals.

World decoupling

But FAR FROM ENQUGH

But what about the costs?

- What do economists mean by costs anyway?
- Less welfare - or simly less consumption
- than we would have had otherwise

Kostnaden för att stabilisera atmosfärens koldioxidhalt

Tusen miljarder USD/år
Global BNP

Kostnaden för att stabilisera atmosfärens koldioxidhalt

Tusen miljarder USD/år
Global BNP

5-20\% For now and forever...

Presenting Future costs clearly

Also much critique of Stern Stern points to uncertainty

- Ecosystem damage:
- Albedo
- Cloud formation
- Methane hydrates
- Human response, deforestation
- Asian population

Also much critique of Stern Stern points to uncertainty

- Ecosystem damage:
- Albedo
- Cloud formation
- Methane hydrates
- Human response, deforestation
- Asian population
- Which is most important ?

In the calculations by Stern the largest source of uncertainty was:

- Albedo
- Cloud formation
- Methane hydrates
- Human response, deforestation
- Chinese population
- The Rate of Discount!

Welfare, Discounting, Relative Prices and Risk

- What is the COST? \rightarrow
- Discounting in multisector growth models
- Valueing ecosystem damage \rightarrow Changing relative prices
- Ethical issues, Welfare Weights
- Treating risks, distributions have fat tails

Ramsey

Value of a future cost

$$
\text { - } V_{t}=V_{o} /(1+r)^{t}
$$

Value of a future cost

- $V_{t}=V_{o} /(1+r)^{t}$
- $\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{\mathrm{o}}(1+\mathrm{p})^{\mathrm{t}} /(1+r)^{\mathrm{t}}$
- Effect of relative prices can be = discounting!
- Iff p big enough!

Labour

- 100 years ago 5\% of the population in Copenhagen had a maid.
- Incomes have grown 34\%/year

Labour

- 100 years ago 5\% of the population in Berlin had a maid.
- Incomes are growing 4\%/year
- How many people have a maid today?

Why can't we all have maids?

Why can't we all have maids?

- $P_{\text {maid }}=f($ Income $)$

FOOD

- World Agriculture is 24% GDP
-What is cost of a 1% loss ?

FOOD

- World Agriculture is 24% GDP
-What is cost of a 1% loss ?
- ~ $0.01 * 24 \%=0.24 \%$ GDP

FOOD

- World Agriculture is 24% GDP
- What is cost of a 95% loss ?
- ~ 0.95*24 = 23% GDP

FOOD

-23\%!
 -Doesn’t seem right

-What is wrong?

Relative Prices of food...

Relative Prices of food...

- will change so fast
- The 5% left which today accounts for 1% of GDP will become ALL of GDP.

Future Ecosystem Scarcities

- Water
- Soil
- Wild (non-cultivated) fish
- Biodiversity
- Glaciers and snow
- Wildlife, protected areas
- Fuelwood, pasture, silence (?)

OK: lets talk Economics

- Why do we discount?

OK: Economics

- Why do we discount?
- We will be richer
- We are impatient
- Rich people dont know the value of money

Assume an intertemporal welfare function

$$
W=\int_{0}^{T} e^{-\rho t} U(C(t)) d t
$$

The tradeoffs between consumption at different points of time are given partly by the "utility discount rate" ρ partly by the utility function U.

The discount rate is the rate of change in the marginal value of more consumption = sum of two factors

$$
r=\rho-\frac{\frac{d}{d t} U^{\prime}(C(t))}{U^{\prime}(C(t))}
$$

With Constant elasticity of utility function \rightarrow classical Ramsey Rule

$$
U(C)=\frac{1}{1-\alpha} C^{1-\alpha}
$$

$$
r(t)=\rho+\alpha g_{C}(t)
$$

Ramsey and growth

- If $\rho=0.01, \alpha=1.5$ and $g=2.5 \% r=4.75 \%$.
- Constant over time iff growth is constant.
- Increases with growth
- If growth falls, future discount rates will fall over time. Azar \& Sterner (1996): limits to growth \rightarrow falling discount rates and higher damage from carbon emissions.

ECOLOGICAI

ECONOMICS

ANALYSIS

Discounting and distributional considerations in the context of global warming

Christian Azar ${ }^{\mathrm{a}, *}$, Thomas Sterner ${ }^{\mathrm{b}, 1}$
${ }^{\text {a }}$ Institute of Physical Resource Theory, Chalmers University of Technology, Göteborg University, 41296 Göteborg, Sweden
${ }^{\mathrm{b}}$ Department of Economics, Göteborg University, Vasagatan 1, 41180 Göteborg, Sweden
Received 21 May 1995; accepted 6 May 1996

Compare Nordhaus 5 \$/ton

The marginal cost of CO_{2} emissions

Fig. 3. The generalized cost of a unit emission of CO_{2} is plotted as a function of γ in four cases. In plot A, B and C , the inequality situation is worsened, unchanged, and improved, respectively. In plot D , income distribution is not considered. The higher the value for γ, the higher is the discount rate, but also the inequality

Are there Limits to Growth?

- Clearly YES:
- A finite planet
- The amount of cement, carbon, steel and water that we can use is limited!

Are there Limits to Growth?

- Clearly YES:
- A finite planet
- The amount of cement, carbon, steel and water that we can use is limited!
- Clearly NO:
- Human imagination is limitless
- The quality of concerts and computer games knows no bounds!

Our best image of the future

- Continued growth...
- Rich get even richer.
- Poor will eventually also get richer but gap not eliminated.
- Much of growth in manufactured goods that use little resources. More mobiles, culture, computation, communication...
- Less transport, corals, clean water?

Consequences of this

- Rapidly rising real price of carbon intense goods (and this may apply to other env problems too).
- Allocation of rights will be sensitive!
- Discounting needs to be suplemented by relative price change.

We need two sectors:

C which grows; E (which does not)

$$
W=\int_{0}^{\infty} e^{-\rho t} U(C, E) d t
$$

The appropriate discount rate r is then

$$
r=\rho+\frac{-\frac{d}{d t} U_{C}(C, E)}{U_{C}(C, E)}
$$

Relative price of "environment"

Value of environmental good is given by

$$
U_{E} / U_{C}
$$

The relative change in this price, p, is

$$
p=\frac{\frac{d}{d t}\left(\frac{U_{E}}{U_{C}}\right)}{\left(\frac{U_{E}}{U_{C}}\right)}
$$

To simplify: select utility function that combines contant elasticity of utility above with constant elasticity of substitution between E and C

$$
U(C, E)=\frac{1}{1-\alpha}\left[(1-\gamma) C^{1-\frac{1}{\sigma}}+\gamma E^{1-\frac{1}{\sigma}}\right]^{\frac{(1-\alpha) \sigma}{\sigma-1}}
$$

The relative price effect

$$
p=\frac{\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{U_{E}}{U_{C}}\right)}{\left(\frac{U_{E}}{U_{C}}\right)}=\frac{1}{\sigma}\left(g_{C}-g_{E}\right) .
$$

Formula for discounting

- not only is there a relative price effect
- but the discounting formula itself changes

Discounting in 2 sector model

$$
r=\rho+\left[\left(1-\gamma^{*}\right) \alpha+\gamma^{*} \frac{1}{\sigma}\right] g_{C}+\left[\gamma^{*}\left(\alpha-\frac{1}{\sigma}\right)\right] g_{E}
$$

Where y^{*} is "utility share" of the environment

$$
\gamma^{*}=\frac{\gamma E^{1-\frac{1}{\sigma}}}{(1-\gamma) C^{1-\frac{1}{\sigma}}+\gamma E^{1-\frac{1}{\sigma}}}=\frac{U_{E} E}{U_{E} E+U_{C} C}=\frac{\frac{U_{E}}{U_{C}} E}{\left(\frac{U_{E}}{U_{C}} E\right)+C}
$$

Comparing discount formulae

$$
\begin{gathered}
r=\rho+\alpha g \\
r=\rho+\left[\left(1-\gamma^{*}\right) \alpha+\gamma^{*} \frac{1}{\sigma}\right] g_{C}+\left[\gamma^{*}\left(\alpha-\frac{1}{\sigma}\right)\right] g_{E} \\
P=\frac{1}{\sigma}\left(g_{C}-g_{E}\right)
\end{gathered}
$$

Discount rates will be the same if

- $\mathrm{Y}^{*}=0$ (Sector E plays no role for U)
- $g_{C}=g_{E}$ (Sectors E and C identical)
- $\alpha \sigma=1$

2 sector discount will be lower if

- $g_{C}>g_{E}$ (Sector E grows slowly) and
- $\alpha \sigma>1$ (ie if substitutability is good and utility curvature very high).
- NB that normally if $\sigma \neq 1$ and $\alpha \sigma \neq 1$ then r in the 2 sector model will change over time

The TOTAL discount factor

Using R to denote the combined effect of discounting and relative price increase of environmental goods, i.e. $R=r-p$,

$$
R=\rho+\left[\left(1-\gamma^{*}\right)\left(\alpha-\frac{1}{\sigma}\right)\right] g_{C}+\left[\gamma^{*} \alpha+\left(1-\gamma^{*}\right) \frac{1}{\sigma}\right] g_{E}
$$

2 sectors, C\&E with different rates $\sigma=0,5$

C gets bigger but the price of E goes up FASTER

So the value share of E rises

After some time E dominates

Val share

Therefore variation in discount rate $\rho=0.01, \sigma=0.5, \alpha=1.5, v^{*}=0,1 g_{C}=2.5 \%$

Comparison of discountrates

$$
g_{c}=2,5 \%, \text { rho }=1 \%, g_{E}=0 \%
$$

α	σ	Convent r	2sector \boldsymbol{R}		
0.5	0.5	2.25	3.35		
0.5	1	2.25	$\mathbf{2 . 3 7}$		
0.5	1.5	2.25	$\mathbf{2 . 2 8}$		
1	0.5	3.5	4.24		
1	1	3.5	$\mathbf{3 . 5 0}$		
1	1.5	3.5	$\mathbf{3 . 4 4}$		
1.5	0.5	4.75	5.12		
1.5	1	4.75	$\mathbf{4 . 6 2}$		
1.5	1.5	4.75	$\mathbf{4 . 6 0}$		

Comparison of discountrates

$$
g_{c}=2,5 \%, \text { rho }=1 \%, g_{E}=0 \%
$$

		Convent	2sector \boldsymbol{R}	Price p	TOT R
0.5	0.5	2.25	$\mathbf{3 . 3 5}$	-5.00	-1.65
0.5	1	2.25	$\mathbf{2 . 3 7}$	-2.50	-0.12
0.5	1.5	2.25	$\mathbf{2 . 2 8}$	-1.67	0.61
1	0.5	3.5	4.24	-5.00	-0.76
1	1	3.5	$\mathbf{3 . 5 0}$	-2.50	1.00
1	1.5	3.5	$\mathbf{3 . 4 4}$	-1.67	1.77
1.5	0.5	4.75	$\mathbf{5 . 1 2}$	-5.00	0.12
1.5	1	4.75	$\mathbf{4 . 6 2}$	-2.50	2.13
1.5	1.5	4.75	$\mathbf{4 . 6 0}$	-1.67	2.94

Conclusions

- Relative prices CRUCIAL in long run CBA
- Complement discounting by price correction
- Discounting itself is complex in 2 sector model
- Important policy conclusions for Climate
- Next step: integrated GE Climate model

Introducing relative prices into DICE

- Stern has been criticised for low r. $\delta=0,1$ $\eta=1$ and per capita $g=1,3$. Total 1.4
- Nordhaus reproduced Stern-type results with DICE and low r
- We reproduce Stern (or intermediate) results with Nordhaus values (high r)
- By including a small part of non-market sector and changing relative prices.

An even Sterner Review

Thomas Sterner \& Martin Persson

1. Comment on r, η and δ
2. And on non market damages
3. Introduce Relative Prices into Debate

2 Changes to DICE

- The original model maximizes total discounted utility using a CRRA function
- $U(C)=C^{1-\alpha} /(1-\alpha)$
- To include the effect of changing relative prices we use a constant elasticity of substitution function of two goods:
- $U(C)=\left[(1-\gamma) C^{1-1 / \sigma}+\gamma E^{1-1 / \sigma}\right]^{(1-\alpha) \sigma /(\sigma-1) /(1-\alpha)}$

Environmental Damages

- First we assume a share of environmental services in current consumption of 10%.
- We assume damage to environmental amenities will be quadratic in temperature
- At 2,5 ${ }^{\circ}$ damage $\sim 2 \%$ current GDP
- $E(t)=E_{0} /\left[1+a T(t)^{2}\right]$
- So E is actually falling due to climate ch.
- We assume elasticity of Substitution is .5

Figure 2: Optimal carbon dioxide emission paths in the DICE model for four different cases: the original model (Nordhaus discounting), the original model with high non-market impacts(High non-market impacts), the original model with low discount rate (Stern discounting) and a run where the changes in relative prices between market and non-market (environmental) goods is taken into account (Relative prices included). See text for explanation.

Conclusion

- Stern has been accused by Nordhaus et al
- High damage because of low r
- (This in turn because of low δ and/or η)
- We do not necessarily disagree with these
- We show that even with high $\delta \& \eta$ carbon abatement is optimal if relative prices for damaged ecosystems are considered
- Another approach is risk \& Uncertainty

Thanks

- More:
- More on Stern and Sterner...
- Tansport sector
- Change in various sectors
- Bargaining and allocation efficiency
- Political economy of gas taxes
- Distributional issues, regressivity

Other Applications

- CBA for a road past Sthlm ...
- Same gasoline price in 25 yrs as today
- No congestion fees...
- Thing of WTP for water, recreation, space, maids
Relative prices very different

Costa \& Kahn, The Rising Price of Nonmarket goods, AEA Papers \&P

Table 1-The Value of Life in 2002 Dollars, 1900-2000

Year	Value of life
1900	$\$ 427,000$ (predicted)
1920	895,000 (predicted)
1940	$1,377,000$
1950	$2,426,000$
1960	$2,884,000$
1970	$5,176,000$
1980	$7,393,000$
2000	$12,053,000$ (predicted)

Analyze data on evolution of

- The value of ecosystem services?
- The WTP for fair treatment
- For silence
- Darkness
- Coral reefs
-Water of different quality?

Sensitivity testing

More opinions on Stern \& Nordhaus

- Not reasonable to base r, in this case, on short term markets for equity or bonds
- Reasonable to use low delta
- Eta = 1 is already quite high
- Stern discount rate quite reasonable for climate issues.
- On top of this more non-market damages and changing relative prices!

More opinions on Stern \& Nordhaus

- Not reasonable to base r, in this case, on short term markets for equity or bonds
- LONG run should be used. Other phenomena such as lack of aid and lack of progressive taxes
- In 1970s "everyone" recomended welfare weighting (Dasgupta, Marglin, Sen, Little \& Mirrlees (1974) Drèze and Stern. $\mathrm{Eta}=1$ is already quite high. Sometimes 2 was recommended but
- In practical CBA it is not used ie $\boldsymbol{\eta = 0}$!
- It would be strange to use $\boldsymbol{\eta}=\mathbf{0}$ for all current issues and $\eta=2$ only for decisions about the future.

Sign of Derivatives of r, p, and R

	R	p	$R=r-p$
g_{C}	+	+	-if $\alpha \sigma<1$ + if $\alpha \sigma>1$
g_{E}	-if $\alpha \sigma<1$ + if $\alpha \sigma>1$	-	+
α	Depends on γ^{*}, g_{C} and g_{E} $\left(+\right.$ if $g_{C}>0$ and $\left.g_{E} \geq 0\right)$	0	Depends on γ^{*}, g_{C} and g_{E} $\left(+\right.$ if $g_{C}>0$ and $\left.g_{E} \geq 0\right)$
σ	- (if $\left.g_{C}>g_{E}\right)$	$-\left(\right.$ if $\left.g_{C}>g_{E}\right)$	+ (if $g_{C}>g_{E}$)

Double counting?

- Is someone lost:
- Are we double counting when we first work out special discount formula that builds on the marginal utility of quantities of E and C and then also add in a relative price change?
- No: Our discount rate for the two sector model is specifically formulated in terms of rate of change of U_{C} !

Curvature of utility

Some argue for high discount rate

- Because of high α.
- If future is rich it can take care of itself
- Then we should value damages that hit the poor even higher!
- The loss of one family's harvest in Bangladesh
- Maybe = \$1000 but welfare weighted

Breakdown by sector

- How much reduction for transport?
- 25-30\%
- Fast Growing;

The most efficient pol Instrument?

- Kyoto
- ETS
- Agricultural policy
- Subsidies
- R\&D - fusion, solar, wind....energy saving
- Chinese "One Child" policy

The most efficient pol Instrument?

- Kyoto
- ETS
- Agricultural policy
- Subsidies
- R\&D - fusion, solar, wind....energy saving
- Chinese "One Child" policy
- Gasoline Taxes!

Growth and Environment

 $\underline{2020}$- Can we increase income 50% \& reduce fossil emissions 50\%?
- Take the transport sector: A simple modell for fuel demand is $\mathbf{Q}=\mathrm{Y}^{\mathrm{a}} \mathrm{P}^{\mathrm{b}}$
- Elasticities 1 for income Y , 0.8 for price P

Simple-minded economist solves major problem:

- All you need is to raise price of fuel by 300% !
- Because $\mathrm{P}=(0.5 / 1.5)^{-1 / 0.8}=$ 3.95

300% !

- Is that realistic??

-What happens to Welfare?

- Isn't there some other way ?

Is it possible?

Is that POSSIBLE?

- Yes : Europe has already done it! International price of fuel is $0,3 \$ / l$.
- If the Whole World had prices like UK or Italy a large share of the problem would be solved.
- Though only for transport. We haven't done much concerning industry and electricity yet...

Petrol

prices

Consumption/cap

ᄃıIECL UI IIIIIEI IUEI NIICE II OECD

	Hypothetical fuel			
country	price	Fuel use	use	Reduction in $\%$
AUSTRAL	0,54	13306	7664	$\mathbf{4 2}$
CANADA	0,51	28167	15535	$\mathbf{4 5}$
FRANCE	0,95	14216	12968	$\mathbf{9}$
GERM	0,85	30025	25061	$\mathbf{1 7}$
ITALY	1,12	17565	18230	$\mathbf{- 4}$
JAPAN	0,61	41828	26742	$\mathbf{3 6}$
MEXICO	0,69	21343	15025	$\mathbf{3 0}$
NETH	1,07	4139	4147	$\mathbf{0}$
SPAIN	0,92	8928	7919	$\mathbf{1 1}$
UK	1,07	21513	21504	$\mathbf{0}$
USA	0,31	356981	131819	$\mathbf{6 3}$
OECD	0,53	605873	346844	$\mathbf{4 4}$

Transport Fuel Use in OECD Gtons fuel (and $\left.\sim \sim^{*}(12 / 14)\right)$

UK US
 Real prices prices

Fuel
use 1,13
0,72
1,47
-36\%
$+30 \%$

Subsidies for "environmental" cars

- Annual tax: Renew.360; gasoline 2046; Diesel 4011 (- 6000 kr >1July)
- Difference several hundred $€ / y r$
- Parking 1000 - 6000 kr/yr
- Env car subsidy $10000=2000 / \mathrm{yr}$
- Tax benefit: 50% of $\sim 15000 \mathrm{Kr}$
- Total 14-20 $000 \mathrm{kr} / \mathrm{yr}$ or $0,5-1 \mathrm{kr} / \mathrm{km}$
- Reasonable?

CO2 storage under around

Figure 6.1 The Sleipner CO_{2} injection project in the North Sea. Approximately 1 million tonne CO_{2} per year is being disposed into a saline aquifer

rouses Witriout Heating...

Houses without Heating Systems
20 low energy terrace houses in Göteborg

In Sweden !?

Fuel use in Swedish district heating

More Energy - less Carbon

There is enough energy

Sea Level Rise

Climate Bargaining

Different burden allocations

Current GF Equal Per Capita

USA $1750 \quad 875$ 512,5 170
INDIA $300 \quad 150 \quad 512,5 \quad 855$
Total 2050102510251025

The allocation between US and India

The allocation between US and India

Bargaining strategies

- What do you do when you are in a shop where you have to bargain and you really want something but it is much too expensive?

Political Economy of Fuel Taxation

-Henrik Hammar
-Åsa Löfgren
-Thomas Sterner

Determinants of Fuel demand

- Hundreds of studies...
- $Q=f(Y, P)$
- Dahl - Sterner surveys
- Stylized facts: Income elasticity = 1
- Price Elasticity = -0,8
- See figures \rightarrow

Causality

- Q as dependent variable:
- (1a) $Q_{t}=\alpha+\beta Q_{t-1}+\beta Q_{t-2}$
- (1b) $Q_{t}=\alpha+\beta Q_{t-1}+\beta Q_{t-2}+\beta P_{t-1}$
- P as dependent variable:
- (2a)
$P_{t}=\alpha+\beta P_{t-1}+\beta P_{t-2}$
- (2b) $\quad P_{t}=\alpha+\beta P_{t-1}+\beta P_{t-2}+\beta Q_{t-1}$

Early work (Goel\&Nelson 1998)

- Presence of oil indust. \rightarrow lower gas taxes
- Higher highway tolls \rightarrow lower gas taxes
- High pop density \rightarrow high/low taxes <>1981
- Compliance with env. standards \rightarrow high tax
- Nominal taxes tend to be adjust. to inflation
- Higher real (pre-tax) gasprices \rightarrow low taxes

$T_{i t}=f\left(G_{i t}, Y_{i t}, N P_{i t}\right.$, Tax $_{i t}$, Debt $_{i t}$, Year, $\left.D_{i}\right)$

$T_{i t}=$ taxes in country i year t
$\mathrm{G}_{\mathrm{it}}=$ gasoline use per capita
$(\mathrm{G} / \mathrm{V})_{\mathrm{it}}=$ gas consumption per vehicle
$V_{\text {it }}=$ Vehicles per capita
$Y_{\text {it }}=$ Income (GDP) per capita
$N P_{i t}=$ Net price of gasoline
Tax $_{\text {it }}=$ Total taxes as share of GDP
Debt $_{\text {it }}=$ Total public debt as share of GDP
Year= Time trend, $D_{i}=$ Country dummies

Determinants of the gasoline tax rate

	1 a	2 b	5
Estimator:	OLS	Fix-eff AR(1)	OLS
Gas/capita	-0.91	-0.83	
Gas/car			-0.92
Cars/capita			-0.89
GDP/capita	-0.05	0.00	-0.06
Net price	-0.29	-0.14	-0.30
total tax share	0.68	0.14	0.68
Govern. debt	0.00	0.10	0.00
Year	0.01		0.01

Interpretation

- Income \rightarrow tax levels - (very weak)
- Time dimension weak + (Fig 2)
- High consumption \rightarrow lower gasoline tax Gas/car clearest correl (Fig 3\&4)
- Pre-tax price: - Governments appease protests lower taxes when net prices rise
- Taxation+ betw count (not over time fig 5)
- Goverm. debt (Fig 6) (+) only when country effects included

Interpretation

- Income \rightarrow tax levels - (very weak)
- Time dimension weak + (Fig 2)
- High consumption \rightarrow lower gasoline tax Gas/car clearest correl (Fig 3\&4)
- Pre-tax price: - Governments appease protests lower taxes when net prices rise
- Taxation+ betw count (not over time fig 5)
- Goverm. debt (Fig 6) (+) only when country effects included

Interpretation

- Income \rightarrow tax levels - (very weak)
- Time dimension weak + (Fig 2)
- High consumption \rightarrow lower gasoline tax

Gas/car clearest correl (Fig 3\&4)

- Pre-tax price: - Governments appease protests lower taxes when net prices rise
- Taxation+ betw count (not over time fig 5)
- Goverm. debt (Fig 6) (+) only when country effects included

Conclusions

-Variation in prices mainly due to taxes - Reverse Causality: high cons \rightarrow low tax
-Tendency to incr. tax over time
-Counter-cyclical adaptation of taxes -Relationship with tot tax/ public debt
-Small tax rises have 2 pos effects: 1) some demand red. 2) weaken resistance to future tax by changed lobbv structure \& bv

Transport Fuel Use in OECD Gtons fuel (and $\left.\sim \sim^{*}(12 / 14)\right)$

UK US
 Real prices prices

Fuel
use 1,13
0,72
1,47
-36\%
$+30 \%$

Gasoline taxes Regressive??

Table1: Budget shares of fuels (Transport + Cooking and Lighting Fuels)

India contd.

S Africa

Figure 1: Fuel expenditure as a share of total household expenditure

Sweden

Bensin
Diesel

Suits Index: (weakly)regr in Y and progressive in expenditures

Balanced budget tax reforms

