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Abstract

New and unique climate prediction data show the regional effect of climate
change for weather outcomes in Denmark. The present study utilizes this
data to forecast and discuss the impacts of climate change on Danish agri-
culture, namely for the distribution of wheat yields. Using a large data set
with farm-level information combined with data on local meteorological ob-
servations, a fixed effect panel data model for wheat yields is estimated,
including a prior tobit model to correct for the selection bias from wheat
production.
Climate change is found to a have strong negative impact on average yields
under the current technological constraints on agriculture. This fall in yields
is transformed into a net increase in mean yields once the impact of techno-
logical progress on yields is taken into account.
In a regionally differentiated analysis, the peninsular Jutland in the west
experiences a larger decrease in mean yields than the eastern parts of the
country. In this context I point to the need for further studies on the specific
cause of the regional differences of the impact as well as the informational
needs on climate change, in order to improve the understanding of potential
adaptation strategies.
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JEL classification: C23, C24, Q12

1 Introduction

The chapter studies the impact of climate change on Danish agriculture, and
provides a discussion on the importance of disaggregated information. The
specific context is the expected change in climate conditions over the coming
centenary and in particular the changes in the full outcome space as opposed
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to the often quoted changes in averages. While earlier studies on the impact
of climate change on agriculture and agricultural adaptation [Schneider et al.,
2000, for instance] have primarily focused on the effects of changes in the
averages of climate variables1 on agricultural yields, it is the full distribution
of weather variables over outcomes, space and time that is of interest to the
farmer. In the present study I therefore put weight on the local disaggregation
of the meteorological impacts as a tool to describe the full outcome space.

Agriculture has a number of unique production features. Agricultural produc-
tion is a sequential process, where the inputs and timing of input responses
at several stages of production are crucial for the harvest-outcome. It is the
unpredictability and stochastic nature of weather at all stages of production
that distinguishes agriculture from other production procedures. As an exam-
ple of this I study the impact of meteorological variation and climate change
on wheat yields in Denmark.

Through the use of observed data from privately-managed farms, as opposed to
agronomic studies with experimental plots or calibrated simulation algorithms,
the present study integrates the effects of the ecological system, indirect effects
of climate on crop growth as well as management in the analysis. That is, the
climate is seen as one input factor in the overall production frame for agricul-
ture. The agronomic approach to yield modelling is a detailed description of
biological systems, but to quote Landau et al. [1999], ”It is the real-life yields
and not the imaginary optimal yields that one would want to predict in most
applications, including climate change”. Suboptimal management as well as
indirect effects of climate change are crucial for an economic description of the
impact of climate change on agriculture in general.

A farm encompasses several parallel as well as sequential production processes.
Several crops are grown to exploit advantages of crop rotation, capital inputs
often exhibits several uses, and many farms exploit the synergies with hus-
bandry. Agricultural production is therefore often modelled in a multi-output
setting, see e.g. Arnberg [2002] for an overview. Nevertheless, to simplify the
analysis the present study nevertheless concentrates on wheat yields, employ-
ing a selection model to account for the allocated of farm acreage to wheat.
The yield model is set up as a fixed effect model, as correlation between farm-
level unobservable effects and inputs into wheat production are highly likely2.
I find a good fit of the econometric model to 12 years of agricultural panel
data combined with local weather observations.

Mendelsohn et al. [1994] applied a regression approach to study the determi-
nants of net rent and farmland value, there among climatic outcomes. The
value of farmland is based on the present value of possible future returns from
the land. It is however highly affected by the vicinity of the land to an eco-
nomic hub, the administrative definition and future plans for the area as well

1I here use the distinction between ’climate’ and ’weather’ stated by the Danish Meteo-
rological Institute, which defines climate to be the mean weather at a location over a longer
period, typically 30 years. ’meteorological’ will in the present study thus refer to observed
weather data.

2For a similar approach, albeit with a random effects model under the dubious assumption
of zero correlation, see e.g. the study of Heshmati [1994].
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as the credit and commodity markets. And most of all land prices in Europe
are driven by agricultural quotas on livestock as well as subsidies of crops and
acreage. In the present study I see an advantage in using direct crop yields
as the dependent variable, to gain an unadulterated and more disaggregated
assessment of the effect of climate change on agriculture.

The following section will describe the climate data and prediction to be used,
and document the regional disparities in climate change for Denmark. After
reviewing general findings for the impact of climate change on agriculture and
in particular on wheat, I proceed to describe the agricultural as well as the
meteorological data on which the model for wheat yields is calibrated, and to
characterize the production of wheat. The latter gives evidence of differences
between the wheat and no-wheat producing farms. This motivates the use
of a selection correction model and section 5 discusses modelling approaches
to agricultural production and lays out the fixed effect panel data model for
wheat yields with a tobit selection model for wheat acreage. Section 6 then
reports the estimation results for the selection model, followed by two different
specifications of the yield model. In the first estimation I assume homogeneity
in the response of yields to weather across the country, while the second es-
timation introduces regional differentiation. The selection correction is found
to be significant in both models, as is the regional differentiation in the second
model. Section 7 utilizes the two calibrated models to forecast the impact of
climate change on wheat yields. The prior expectation that increase in tem-
peratures will lead to a fall in yields is confirmed, while the western parts of
the country are forecasted to suffer a relatively larger fall in the mean yield.
The forecasts lead to a discussion of adaptation options and suitable policy
environment in section 8, before section 9 concludes.

2 Documenting Climate Change

2.1 Climate Data and Forecasts

For the study of regional climate change over Denmark and subsequent sim-
ulations of wheat yields as a function of meteorological forces, the present
research makes use of new and extensive climate data produced by the Danish
Meteorological Institute in the framework of the PRUDENCE-project3. The
project has provided a series of high resolution climate data scenarios for the
years 2071 to 2100 and the work has explicitly been built around regional
climate models (RCM). The climate models were calibrated on a control be-
tween 1961 and 1990, and the scenario forecast for 2071 to 2100 is based on
the SRES A2 greenhouse-gas scenario4 as specified by the Intergovernmental
Panel on Climate Change (IPCC).

3See appendix A for a description of PRUDENCE, as well as http://prudence.dmi.dk/.
4”The A2 storyline and scenario family describes a very heterogeneous world. The un-

derlying theme is self-reliance and preservation of local identities. Fertility patterns across
regions converge very slowly, which results in continuously increasing population. Economic
development is primarily regionally oriented and per capita economic growth and techno-
logical change more fragmented and slower than other storylines.” [IPCC, 2001a, p.18]. See
appendix B for details on all the IPCC scenarios.
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The work has produced climate simulations down to a 25km-resolution, sup-
plying a invaluable tool to assess detailed consequences of climate change on
human systems. Earlier work only produced coarser global circulation models
with a maximum resolution of approximately 300km. The present work will
focus on monthly data of 2-meter-temperature and precipitation, as these are
seen as the most decisive for biomass production and agriculture under Danish
conditions [Olesen & Bindi, 2002].

2.2 Changes in Climate Distributions over Denmark

Overall mean differences between distributions can be tested using a Kolmor-
gorov-Smirnov-test or a t-test for equality of means. A more sensitive indicator
of distributional discrepancies is achieved by using the quantiles of distribu-
tions, as argued by Wilk & Gnanadesikan [1968]. Quantile analysis is a non-
parametric method that is more resistant to outliers and other disturbances to
the underlying probability model than parametric models. See Lazante [1996]
for an illustrative discussion.

The q%-quantile is defined as the value xq in the empirical distribution of
the data that solves P(x ≤ xq) = F (x) = q%, where F (x) is the cumulative
distribution function of x.. Reporting xq for various values of 0 ≤ q ≤ 100 can
give a description of individual parts of a distribution, for instance the upper
tail or the middle range. Two distributions FA and FB can equally be held up
against each other by comparing their quantiles xq

A and xq
B for several values

of q.

Ferro et al. [2004] apply this idea to evaluate changes in climate distribution
data. They argue that (functions of) quantiles can capture changes in the
location (represented by the median m) as well as the scale (interquartile
range s = x75 − x25) and the shape (skewness a = [x75 − 2 · x50 − x25]/s).
Below the difference between climate distributions under the control and the
scenario will be explored using quantile-quantile plots. A Q-Q-plot plots the
order values of a distribution FA against the ordered values of a distribution
FB. If the two distributions are identical, the plot should align along the
straight diagonal line. A change in location would result in a parallel shift
of the plot against the diagonal, while a change in scale would tilt the plot
against the diagonal.

Figure 1 and 2 plot quantiles of the scenario against quantiles of the control
for temperature and precipitation, respectively. The data consists of monthly
means (and per day for precipitation) . To document regional differences, the
analysis is done for Denmark as well as for five regions of the country.

Overall, the plots for temperature indicate a change in location, where
the prediction of the scenario distribution are above the control distribution.
There is a slight indication of a higher (lower) increase in the lowest (highest)
region, compared to the middle of the distribution. While quantile-plots have
less power in the tails of a distribution, where the densities are sparse, this
signals a narrower distribution in the scenario.

To examine the change precipitation pattern, a distinction between rain and
drizzle/dew has to made. In figure 2 I therefore truncate the distribution of
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Figure 1: Q-Q-plots of temperature in control and scenario

precipitation at 1 mm/day, and solely examine the change in precipitation
patterns over 1mm/day. The rain plots show a very different picture from the
temperature plots. For the full country there is a clear anti-clockwise tilt of
the plot relative to the diagonal. This documents a change in the shape of
the distribution, where the lower tail of the distribution remains unchanged,
while high-precipitation outcomes become more frequent. The regional disag-
gregation shows clear differences from west to east. It is mainly the west of
Denmark (Vendsyssel, Vestjylland) that will experience more frequent high-
precipitation events. The predicted changes in precipitation distribution for
the central (Fyn) and eastern regions (Midtsjælland) are far less pronounced.
These changes in distributions thus follow the present-time differences in the
level of precipitation across the country, where the amount of rainfall decreases
from west to east.

This comparison of the control period with the predicted scenario period yields
two conclusions. The Q-Q plots firstly show the shifts in temperature and
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Figure 2: Q-Q-plots of precipitation in control and scenario

precipitation levels. As it was argued above it is not so much the changes in
the climate variables but rather the changes in derived outcomes that affect
human systems that are of interest. The documented climate shifts therefore
motivate the study of changes in wheat yields as a consequence of climate
change. A second conclusion from the disaggregated climate change plots are
the apparent differences in the changes of the climatic distributions across
regions of Denmark. PRUDENCE took its starting point from the lack of
regional detail in earlier climate change studies using global circulation models.
Even though Denmark in general is a homogenous country in terms of agro-
climatic conditions, the results above show heterogenous changes in the climate
variables. This proves the importance of disaggregated analyses of climate
change.

The present study investigates the regional differences in the impact of climate
change on wheat yields, as an example of a factor in the human management
system affected by climate and its changes.
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3 Agriculture and Climate Change

Intensive arable and livestock farming dominate agriculture in Denmark. Pho-
tosynthesis is the source of growth for biological systems, and the growing sea-
son is restricted by low temperatures in early spring and low solar radiation
in the autumn [Olesen, 2000]. Precipitation is necessary for plant growth, but
the amount of rainfall also directly affects the handling of the soils. Proper
farming of the land is inhibited both by too wet and too dry soils.

Climate therefore has a complex impact on agriculture, where the volume
distribution as well as the temporal distribution of meteorological outcomes
matter. The broad pattern of a local climate is shaped by the total volume
of radiation, precipitation and temperature over a certain period, typically
a year. The distinctions between ecological zones are evidence of this. The
temporal dimension matters, as plant growth is a process with several stages
and climate affects all stages distinctly. During the earlier stages, cereals need
sufficiently of soil water. During the final ripening and harvest however, crops
require mainly radiation.

It is therefore not enough to only examine the broad trends for climate change
in terms of mean annual temperature change, mean annual precipitation change,
etc., in order to see the effects on agriculture. On the contrary, it is essen-
tial to take the distributions of climatic variables and namely the changes in
distributions into consideration.

3.0.1 Winter wheat

The present study focuses on the effect of climate change on the yield of winter
wheat. Winter wheat is the highest yielding cereal and thus most attractive
crop in the Danish climatic context, and the decision to plant wheat in a
rotation of crops determines the share of other crops as well.

The duration from sowing to maturity for winter wheat depends on temper-
ature and in many cases length of the day. An increase in temperature will
therefore, ceteris paribus, shorten the period in which the crop can accumulate
biomass. This reduces yields, if the management is not adapted to the change
in circumstances [Olesen, 2000]. But the reduction in yields from temperature
increases will be countered by another factor. A higher content of CO2 in
the atmosphere increases the resource-use efficiency for radiation, water and
nitrogen [Olesen & Bindi, 2002].

And the climate - and changes therein - does not only affect grain yields di-
rectly through temperatures, precipitation and CO2, but also through a num-
ber of indirect channels. The same factors that affect crop growth also affect
weed growth, although the impact can be different and change the competitive
balance between the crop and the weeds [Olesen, 2001]. A change in humidity
and temperature also affects diseases. Warmer conditions are more favourable
to insect pests as insects proliferate. Climate change is therefore also likely
to increase the pressure of diseases and pests on wheat production. In mod-
ern agriculture with the use of large machinery, the workability of the plots
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as determined mainly by the water content of the soil is also crucial for an
optimal management strategy. All these indirect factors from climate to crop
growth are not fully or jointly describable in laboratory tests. I will discuss the
capture of these effects by different approaches to yield modelling in further
detail in section 5.

4 Data Description

To assess the interplay of agriculture and climate, data on agricultural perfor-
mance are combined with detailed meteorological data as well as the described
long-term climate forecasts produced in PRUDENCE. As the latter data was
discussed above, the next two sections will describe the agricultural data, with
emphasis on the characteristics of wheat production, and the contemporaneous
meteorological data.

4.1 The Agricultural Data

The agricultural data used in the present study stems from a yearly survey
undertaken by the Danish Research Institute of Food Economics to ground
national statistics on agriculture. The survey is a representative sample from
the total population of agricultural enterprises in Denmark, stratified accord-
ing to full-time/part-time, size of the enterprise, focus of production, acreage,
age of farmer and location. The population is made up of 42,873 enterprises
(2002) and the sample consists of 4.6% of the total population.

The sample is managed on a rotating scheme, in order to keep the sample
representative of Danish agriculture and reduce the sampling burden on the
single farmer. Every year approximately one third of the farming enterprises
are dropped from the survey, while other are introduced to complete the sam-
ple.

The farm-level data cover the years between 1992 and 2003 with 1,600 to 1,900
farms sampled yearly. This yields a total of 7,330 individual farms and 22,332
observations over a 12 year period. Table 1(a) documents the number of times
the individual farms have been surveyed in the present sample. On average the
farms were sampled trice during the period. The farms cover between 117,639
and 215,100 hectares every year, see table 1(b), with an overall median acreage
of 61 hectares, but as a number of large estates are included the average land
holding is 83 hectares. Table 1(b) also documents the gradual increase in the
land holdings per farm, a development driven by both economies of scale as
well as by regulatory measures requiring acreage corresponding to livestock
holdings. The latter has led especially to an increase in the acreage of hog
farms.

4.1.1 A Characteristic of wheat cultivation

The present study focuses on wheat yields, as wheat is a cornerstone in the
crop rotations of most Danish farms with crops. The acreage of wheat in-
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Table 1: Number and Acreage of Farms
(a) Sampling frequency

Times obs. N
1 2580
2 1447
3 939
4 756
5 487
6 350
7 212
8 218
9 116
10 88
11 46
12 91

Total 7330

(b) Pattern of rotation

Year N farms Acreage, ha
Total Mean Median

1992 1878 117781 63 46
1993 1855 117639 63 45
1994 1873 122519 65 48
1995 1898 131101 69 51
1996 1910 137661 72 55
1997 1869 142276 76 59
1998 1616 127532 79 62
1999 1893 160224 85 65
2000 1867 178705 96 75
2001 1897 193491 102 80
2002 1918 209465 109 85
2003 1858 215100 116 92
Total 22332 1853494 83 61

creased from 3% of the total agricultural area in 1971 to 25% in 1997 [Olesen
et al., 2000]. The following paragraphs and statistics therefore characterize the
production of wheat in the sample in terms of which farms cultivate wheat
and what differences there are in the wheat yields across groups of farms.

In the full sample two-thirds of all farms cultivated wheat, and table 2(a)
shows that this fraction has been constant over the 14 years of the survey.
But disaggregating the sample by counties to gain an impression of regional
differences yields a different picture, with the frequency of wheat cultivation
ranging from a low 37% in Ringkøbing to a high 92% on the island of Born-
holm. This contrast follows from the different agro-climatic conditions and
the derived differences in the composition of farming in the different regions.
The western parts of the country - for instance Ringkøbing, Sønderjylland and
Nordjylland - are mainly built on sandy soils and show a higher proportion
of cattle and dairy farming in contrast to the more clayey soils of the eastern
regions - for instance Vestsjælland and Storstrøm.

The yield for wheat (hkg pr. hectare) over all farms (with wheat production)
and years is approximately normally distributed, see figure 3(a). But the
scatter plot of county averages in yield in figure 3(b) shows a clear variation
between the regional units. I will elaborate on these regional differences in the
subsequent empirical analysis. Even though the sample only covers 12 years,
the fitted quadratic function as well as a median spline function reveal a slight
upward trend in the wheat yield over time.

Crop-producing farms and hog farms5 show the highest wheat yields with a
mean of 69 hkg/ha, while cattle farms on average only harvest 63 hkg/ha,
see table 3. The third column also shows that only 45% of all cattle farm(-

5The definition of the production categories of crop-producing, hog and cattle farms is
based on the main focus of the holdings in terms of gross margins. For further information
see Pedersen [2003].
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Figure 3: Wheat yields

(a) Distribution of wheat yields

(b) Development of wheat yields over time
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Table 2: Frequency of wheat cultivation by farms

(a) Over time

Year Freq. (%)
1992 67
1993 70
1994 69
1995 67
1996 69
1997 68
1998 69
1999 60
2000 63
2001 66
2002 62
2003 64
Total 66

(b) Over space

County Freq. (%)
København 84
Frederiksborg 81
Roskilde 80
Vestsjælland 86
Storstrøm 89
Bornholm 92
Fyn 85
Sønderjylland 64
Ribe 36
Vejle 67
Ringkøbing 37
Århus 79
Viborg 62
Nordjylland 65
Total 66

observations) cultivated wheat, while over three-quarter of the other groups
had wheat acreage. The same distinction applies when studying the percentage
of a farms acreage with wheat in column 4, and cattle farms also harvest a
lower yield. This effect is partly due to the greater focus of cattle farms on
coarse fodder and partly due to the higher prevalence of cattle farms in western
Denmark with relatively poorer sandy soils. There is thus a clear difference in
the likelihood of observing wheat cultivation among the production foci.

Table 3: Wheat prevalence and yield by prod. category

Prod. category Obs. Percentage of Wheat yield
farms acreage mean std.dev.

Crops 5457 76 28 69 17
Cattle 3654 45 8 63 16
Pork 5805 80 31 69 15
Total 14916 64 22 68 16

As a consequence, it is mainly the larger farms that cultivate wheat. But this
consequence can simply be a proxy for the effect of the production category,
where crop and hog farms cultivating more wheat, as these groups on average
are also made up of larger farms.

The management of a farm as a full-time or part-time job does not give rise to
an overall difference in the cultivation of wheat. Table 4 distinguishes between
these two groups, and shows no distinction in either the percentage of farms
with wheat or the average percentage of acreage with wheat.

Organic farms are managed in order to let nutrients cycle between crops and
livestock through the cultivation of fodder crops and extensive (and exclusive)
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Table 4: Full-time vs. Part-time farming

Obs. Percentage of
farms land

Full-time 16953 68 21
Part-time 5647 60 23
Total 22600 66 21

use of manure as fertilizer. Conventional farms can add additional inputs into
the system through e.g. mineral fertilizer. Organic farms therefore have to
plant clover grass and pulses to restore the nitrogen content in the soil, and
their rotation of crops has to pay closer attention to the control of pests by
suitably sequencing their crops. These factors imply that fewer organic farms
cultivate wheat and they on average also have a significant lower share of
acreage with wheat than conventional farms, see table 5.

Table 5: Wheat by organic/conventional holdings

Obs. Percentage of Mean yield
farms acreage (hkg/ha)

Conventional 15368 69 23 69
Organic/under changea 1586 27 5 43
Total 16954 65 22 68

aNot recorded in the data before 1995.

This section has documented some clear determinants of wheat cultivation,
and I will in the following empirical analysis build on this.

4.2 The Meteorological Data

The direct agricultural inputs are supplemented by meteorological data to
explain the regional and temporal differences in wheat yields documented in
figure 3(b). The Danish Meteorological Institute (DMI) collects meteorological
observations from local weather stations around Denmark, where information
on temperature, precipitation and wind speed are recorded. As these sta-
tions are dispersed irregularly, I use interpolated values for a 10*10km grid
calculated by the Danish Meteorological Institute. Here the information from
the individual stations are inversely weighted by distance, and the transition
between land- and sea-climates is handled. This interpolation obtains more
smooth and complete data and lets the observations be less influenced by local,
station-specific characteristics. See Scharling [1999b] and Scharling [1999a] for
more detailed information on the climate grid, the calculations and the data.

From these meteorological grid observations the monthly temperature, pre-
cipitation and potential evaporation are derived and used to represent the
weather impact on agricultural production during the yearly production cycle.
The meteorological data is combined with the agricultural data by allocating
the geographical location of the gridpoints to the municipalities the farms are
located in. In case where there are several gridpoints in one municipality the
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values are averaged. With optimal sowing of winter wheat in September and
a typical harvest in August the meteorological information from September to
August are used to explain yields.

A decomposition of the variation in the meteorological data over space and
time shows that the variation for temperature as well as for rain is dominated
by the variation over time rather than variation over space. This was to be
expected, given the geographically small area of Denmark, but stresses the
importance of analyzing time series rather than only cross-sectional data to
gain efficient estimates.

In figure 4 I have plotted yearly figures for temperatures, precipitation and
yields over the observed years. Here as well the seeming upward trend in
yields is conspicuous. Different combinations of temperature and precipitation
determine the variation in yields, and a certain pattern is discernable. If
temperature and rain move in unison, yields remain rather stable around the
average yield at 69 hkg pr. hectare. When there is very high or low rain or
temperature6, yields typically fall. The years 1996 and 1999 are examples for.

Figure 4: Weather and Yield

But these general traits do not nearly explain the variation in yields over
the years, and figure 3(b) also showed considerable variation in yields over
space, adding a further dimension in variation to be explained. I will therefore

6Average overall temperature and precipitation in the observed period is 8.2 ◦C and
689mm, respectively.
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proceed to build a model for wheat yields conditional on local weather as well
as farm-specific input factors and determinants.

5 A Model for Wheat Yields

This section will outline the econometric model used for the description of
wheat yields. The model of yields conditional on a range of farm-level human
as well as ecological production factors is an economic view of wheat cultiva-
tion, and the focus of the present research is on the impact of climate change
on human systems rather than on the intermediate environment.

Agronomic descriptions of crop growth by data from experimental plots and
calibrated mechanic simulation algorithms give detailed analyses of the bi-
ological processes and stages. However, neither simulation algorithms nor
experiments can account for the additional variation and (downward) bias in
the yield outcome that stems from suboptimal farm management. This is at
odds with the finding that the major part of the inter-annual variation in grain
yields of winter wheat can be attributed to variation in stress conditions and
management [Olesen et al., 2001].
Olesen & Bindi [2002] compare the yield gap, defined as the difference be-
tween yields in 1995-99 and the obtainable wheat yields in simulated optimal
management scenarios, with the impact of climate change on yields. They
conclude that for northern Europe the yield increase due to climate change is
of the same magnitude as the yield gap. This substantiates the importance
of managerial bias. For a further discussion of the proper modelling of yields
see the discussion by Landau et al. [1998], Jamieson et al. [1999] and Landau
et al. [1999].

Also indirect impacts of environmental factors on yields through the differen-
tiated impact on soil texture, pests, weeds and diseases are only imperfectly
and sporadically captured by models or experiments. A study that tries to in-
troduce some of these factors into experimental designs is Olesen et al. [2000].
In the present approach this line of impact is taken into account as I study
the impact of weather on the final yields, thus allowing for indirect positive
as well as negative effects. A factor we cannot integrate in the present ap-
proach is the positive effect of CO2 on crop growth, as we do not have the
suitable data on CO2 and the variation in CO2-concentrations over the 13
years would not necessarily be large enough to even measure its impact on
yields. As such the study is a contribution to the overall examination of the
effects of climate change on agriculture, with a special emphasis on the study
of real-world outcomes and managerial bias.

In the following I will first discuss the special characteristics of agricultural
production and the derived model for wheat yields, before estimation issues
are examined and an econometric model is outlined.
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5.1 A Model of Agricultural Production

Agricultural production is a production with several stages, from sowing, the
sprouting of the seeds, ripening and harvesting. The crop yield y is therefore
modelled as

y = f [f1(x1), . . . , fm(xm)|α] , (1)

where superscripts 1, . . . ,m indicate production stages up to the harvest at m,
xt is the input vector in stage t, and fi(·) are separable production functions
for the intermediate ’output’ yi [Just & Pope, 2001]. The wheat production
is moreover conditional on farm-specific effects α that include factors such as
soil conditions and skills of the farmer.
The sequential specification points to an important distinction of agricultural
production from other production processes. In order to gain a high yield,
the farmer has to acquire information on partly unobservable intermediate
outputs, such as the first seedlings and stands. Through experience, external
information from extension services and monitoring the farmer has to deduce
the optimal input strategy for the following stage of production. This process
can be made clear by rewriting equation (1) as

y = f [f1(x1, y0), . . . , fm(xm, ym−1)|α] , (2)

expressing the dependence of the production process7 in stage i on the state of
plant growth in the preceding stage i− 1. y0 constitute the initial conditions
for crop growth, such as soil types.

Agricultural production is also characterized by the high importance of un-
predictable and stochastic external factors, namely weather. The local tem-
perature, moisture and wind speed constitute impacts on plant growth that
cannot be fully countervailed by technological inputs, have impacts in all stages
of production. Too wet conditions in early soil preparation stages can lead to
a reduced airing of the top soil layers and reduce the germination capacity for
newly sown seeds. Too dry conditions, on the other hand, do not give the seeds
the necessary resources for growth and impede the development of stands. A
combination of radiation, rain and temperature over the several distinct stages
of the growing season determine the size and quality of the harvest. Too wet
conditions during harvest lead to high energy consumption both for the har-
vest and subsequent drying of the crop yield. Weather characteristics at all
stages of the growth cycle are thus significant determinants of the final yield,
and have to be included in a descriptive model of crop yields. Equation (2) is
therefore restated as

y = f [f1(x1, y0, ε
1), . . . , fm(xm, ym−1, ε

m)|α] , (3)

where εi represents the impact of weather on the intermediate production
process fi.

7The notation in equation (2) is a more convenient way of writing
y = fm(xm, fm−1[x

m−1, fm−2(x
m−2, . . . , f1(x

1, y0) . . .))|α]
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The econometric model for wheat yield will follow these main structural char-
acteristics, incorporating initial conditions, deterministic inputs and the stochas-
tic impacts of weather on yields from several stages in the vector of explana-
tory variables. In the following two sections I will discuss estimation issues
and outline the econometric model, before I proceed with the estimation.

5.2 Econometric Modelling Issues

For the calibration of a model for wheat yields on the farm-level data several
issues have to be taken into account in the choice and design of an econometric
model. Though discussed earlier, I will repeat the issues here for clarity and
state them in terms of the econometric modelling to follow.

Firstly, individuals with differing skills, knowledge and experience manage a
farm. As these factors are hard to quantify but do affects yields and other
inputs, a farm-level analysis incurs an unobserved farm-specific effect. This
effect is mostly thought of as the managerial skills, motivation and drive of
the farmer, which are hard to capture quantitatively, as discussed by Rogour
et al. [1998]. And in agricultural management of crops, correlation between
this farm-specific effect and explanatory variables representing inputs in the
growth process is likely. For instance, the application of fertilizer will most
likely be correlated with a farmer’s knowledge and experience. An estimation
using e.g. pooled OLS would therefore yield inconsistent estimates. But given
the repeated sampling of most farms in the present study we can deal with
the unobserved effect as well as the correlation with the explanatory variables
by a fixed effect specification of the yield model.

Secondly, there is a potential selection bias in the estimation of a conditional
distribution of wheat yields. In the sample we only observe wheat cultivation
for two-third of the observation in any survey round. The wheat yields for
the sub-sample of farms with wheat cultivation do not give a reliable estimate
of the wheat yields of the other farms, had they decided to cultivate yield.
Typically, a farmer decides what crops to grow given the characteristics of the
farm in terms of other fixed production lines on the farm, available fixed capital
inputs, soil quality, the predominant weather pattern and the expected output
and input prices. Section 4.1 gave evidence of the differences and determinants
of wheat production. The sub-sample of wheat-cultivating farms is therefore
not a random sample of the population, but rather endogenously determined
by farm characteristics and potential yields. An estimation on the sub-sample
therefore does not give consistent estimates for the population of farms, as it
was initially shown by Heckman [1979]. And an estimation on the full sample
would lead to inconsistent estimates, as these are confounded with parameters
determining the probability of cultivating wheat in the first place. To deal with
this non-random selection, I will apply a two-stage selection model, where the
entry of the farms into wheat cultivation is explicitly modelled.

Thirdly, the survey is managed as a rotating panel, where approximately a
third of the farms are dropped from the survey in every round and replaced
by others. Farms are therefore observed for between 1 and 12 time periods,
both continuously and sporadically.
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5.3 An Econometric Model

The current section outlines a two-stage Tobit selection model based on Woold-
ridge [1995] to take account of the raised issues, namely the non-random se-
lection of wheat production, the rotating sampling scheme and the correlated
farm-specific effect in the yield model.

Based on equations (1) to (3), wheat yield for farm i in year t is modelled as

yit = αi + xitβ + uit , (4)

where αi is the farm-specific effect expressing the conditioning factors for
wheat growth. xit is a vector of explanatory variables for wheat yields, and
uit a residual term. The sequential nature of the wheat production model
in equations (1) to (3) will be captured by the inclusion of seasonal weather
observations in the explanatory vector xit.

The observations of wheat yields are conditional on the cultivation of wheat.
Acreage of wheat, hit, is therefore modelled as a left-censored tobit model

hit = max[0; µi + zitδ + vit] and wit = 1[hit > 0] , (5)

where vit ∼ N(0, σ2
t ) and vit is independent of zit and µi. The tobit-specification

utilizes more information than a probit selection rule, which was used by Hesh-
mati [1994]. The vector of explanatory variables zit can be overlapping with
xit, but for identification we have to have an exclusion restriction on xit. This
condition will not be too difficult to fulfill for wheat production, as the deci-
sion to grow wheat is determined partly by fixed characteristics that do not
affect yields directly, an issue I will come back to. To reflect the rotational
sampling, I define rit = 1 if farm i is surveyed in time t.

For equation (4) the strict exogeneity assumption

E(uit|αi,xi, rit) = 0 ∀t (6)

is invoked. The conditioning on rit implies that the rotation in and out of
the sample is assumed to be exogenous to (deviations in) the wheat yield,
a plausible assumption. The rotation of the sample is undertaken to keep
the sample up to date with the overall structure of Danish agriculture. Any
correlation of rit will thus rather be with structural characteristics of the farm,
and assumption (6) does not restrict the correlation of rit with αi and xi.

To correct for the selection bias in equation (4) the expectation of the yield
residual has to be conditioned on both components of the error term, vit and
µi, in the selection model (5) [Wooldridge, 1995].

As it is standard in two-stage selection models, the residual of the yield equa-
tion is conditioned on the residual in the selection equation as

E(uit|vi) = ρvit . (7)

The time-invariant effect µi in the selection equation (5) constitutes a general
predisposition of farm i to cultivate wheat. This effect will depend on the
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general characteristics of the farm in terms of other fixed production lines on
the farm, available fixed capita inputs and soil quality. I therefore specify a
Mundlak [1978]-type decomposition of µi as

µi = z̄iγ + ci ,

where z̄i are time constant farm characteristics and ci ∼ N(0, σ2
c ). Inserting

this expression for µi into the selection model (5) yields

hit = max[0; z̄iγ + zitδ + ci + vit] . (8)

Assuming now that (uit, vit) are independent of (αi, µi, xi, zi), the conditional
expectation (7) can be extended to

E(uit|αi, ci,xi, rit, zi,vi) = E(uit|ci,vi) = −ρci + ρvit . (9)

The first equality restates the orthogonality assumption (6) that αi, xit and
rit are strictly exogenous, conditional on ci and vit.
The second equality makes the residual uit in the yield equation a (linear)
function of the full error term in the selection equation to correct for the selec-
tivity bias, and states the mean independence of uit from vir, r 6= t, conditional
on the latent variable ci. Assumption (9) thus excludes serial correlation in
vit. With a correctly specified selection model (8) for the acreage of wheat, we
should not observe serial correlation in vit. Any latent effect in the selection
should be captured by z̄i.

These assumptions do not put any conditions on the correlation between the
farm-specific effect αi and the explanatory variables xit in equation (4). Other
possible estimation approaches, such as SUR, pooled OLS and GLS require
(at least) contemporary exogeneity of αi and xit. This is, as discussed above,
implausible for the model for wheat yields.

This allow us to restate the model for wheat yields in a fixed effect specification
as

E(yit|αi, ci, rit,xi, z̄t, zit,vi) = αi + xitβ − ρci + ρvit

= ηi + xitβ + ρvit .
(10)

As the selection in equation (5) is fully determined by zit, z̄it and vit, we can
by the law of iterated expectations condition on wit, and we can state the
expectation of wheat yields for the sub-sample of surveyed farms with wheat
as

E[yit|ηi, rit,xi,vi, wit] = ηi + xitβ + ρvit . (11)

This allows us to estimate the panel-data model

yit = ηi + xitβ + ρvit + εit , (12)

using a within-estimator on the sample of wheat-cultivating farms. The selec-
tion bias correction term, vit, is not directly observable, but can be estimated
consistently by cross-sectional tobit regressions of model (8) for each t.

A significance test for H0 : ρ = 0 in model (12) also offers a direct testing
strategy for the occurrence of sample selection.
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6 Estimation Results

Based on the discussion in the previous section of the model for agricultural
production and the econometric estimation strategy, the present section will
present a range of estimation results. First the estimation of the selection
model (8) is reported. The estimated tobit residuals are used to correct for
the selectivity bias in the subsequent discussions of yields estimation results.
I here present a number of different specifications and show the corresponding
simulations or wheat yields under the PRUDENCE scenario forecast described
in section 2.

6.1 Selection equation

In the first stage of the outlined econometric strategy, the selection equation
(8) has to be estimated in order to find estimates for v̂it.

The decision to grow wheat is a function of structural farm characteristics
that are not variable in the short-term as well as year-specific factors that
may change. Table 6 in the appendix reports the estimation of the selection
model for all rounds separately.

As the dependent variable in the selection model, I use the relative share of
wheat of farm acreage, instead of the absolute acreage with wheat. Using
the percentage of wheat lets us distinguish economies of scale from the simple
effect that larger farms can allocate more hectares to wheat.

The focus of production on a farm is a rather stable characteristic, as farm-
ers often have tied considerable amounts of capital in stables and specialized
machinery. Here the indicator for cattle farms is highly significant over all
estimations in table 6, reflecting the earlier stated fact that cattle farms show
a lower proportion of wheat cultivation than hog farms or crop-producing
farms. Hog farms do not show any significant difference in their choice of
wheat compared to the base group of crop-producing farms.

Another structural characteristic is whether the farm is organically managed.
To become organically certified, farmers have to go through a transition period
over which they have to manage their activities organically but cannot obtain
the higher or subsidized output prices. This makes the change rather costly,
inducing sunk costs and thus a reluctance to change on short notice. The
discussed features of organic farms in terms of crop rotation and pest control
mean that wheat is less attractive for them. This is reflected in the significant
negative impact of the organic indicator on the acreage of wheat.

To control for the yield potential of the farm in the decision of the farmer, I
use soil type and general weather patterns. Winter wheat is best grown on
clayey soils, which is clearly reflected in the coefficient of the percentage of
clay soils on the farm. In addition, the seasonal means8 over precipitation and
temperature show a high joint significant, confirming the anticipation that

8The seasons are defined as; autumn: September, October, November; winter: December,
January, February; spring: March, April, May; Summer: June, July, August
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farmers plant wheat if wheat is suited in the specific context. Here a certain
degree of interdependence cannot be ruled out, as the composition and local
practices of agricultural production are adapted to the local conditions. The
positive effect of clay on wheat cultivation can therefore partly stem from
the higher prevalence of cattle farms on sandy soils in western Denmark. A
similar mechanism can also work for the weather patterns, as the main focus
of production is obviously adapted to the specific climatic conditions.

6.2 Yield estimation I

Equipped with the first stage tobit-residuals v̂it, the second-stage fixed effect
model (12),

yit = ηi + xitβ + ρv̂it + εit ,

can be estimated. Table 7 (in the appendix) reports the estimation results for
a first model of wheat yields.

As for the selection bias, a joint test on the included (but not reported) tobit-
residuals from the first stage are highly significant, thus reconfirming the ear-
lier discussion and empirical justification of a selection correction approach.

The explanatory variables xit for wheat yields can be sorted into 3 categories -
the initial conditions for plant growth, the deterministic inputs by the farmer,
and the meteorological outcomes as stochastic inputs to plant production.

Soil types - i.e. different blends of sand, clay and humus particles - constitute
the conditioning factors for plant growth and gain their importance through
their ability to store and release nutrients and water. Clay can hold more
water than sandy soil and wheat generally does better on clayey soil. But
the percentage of clay soil on the farm is not significant in the present yield
regression. This has two explanations. If there is sufficient precipitation, the
soil type is less crucial, and on modern non-organic, intensive farms the man-
agement effects dominate the effects of the soil type. A consequence of this
is that the absolute increase in wheat acreage in Denmark between 1971 and
1997 was largely driven by a relative increase in wheat on sandy soils [Olesen
et al., 2001]. Besides this natural explanation, the econometric specification
may give another clue. The farm-specific effect is likely to capture the ef-
fect of the soil type on yield, and leave the percentage of clay soils without
explanatory power. Further studies would have to shed light on these two
explanations.

The next four coefficients reflect the managed inputs or yearly decisions by the
farmer. Pesticides (expressed in 1000dkr) have a small but significant effect
on the yield, as they keep pests and diseases at bay. Mineral fertilizer does
not show any significant impact on yields, but this may partly be a result
of the econometric specification with a farm-specific effect. The amount of
mineral fertilizer is to a large extend determined by the soil type, as different
soil types have varying requirements on supplementary minerals. The farm-
specific effect will capture the mixture of soil types on the farm, and thereby
also ’explain’ a large part of the fertilizer-effect on yields.
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While the coefficient for pesticides and fertilizer express linear and continu-
ous effects, the organic indicator exhibits a threshold effect, as organic farms
cannot use either mineral fertilizer or pesticides. The estimation result here
reproduces the significantly lower yield - 15 hkg less per hectare on average -
that organic farmers have to tolerate when cultivating without pesticides and
mineral fertilizers. But this fall in yield is usually offset by higher prices and
subsidies for organic products.
The fifth coefficient in this group - lagged percentage of grain acreage - dis-
plays the effect of crop rotation on the yield. All crops utilize a certain bundle
of nutrients in the soil and subsequent cultivation of similar crops on the same
plot reduces the potential yield. A high percentage of grain crops in year t−1
should therefore have a negative impact on yields in year t, which is confirmed
in the present regression.

Even though the data used only cover 12 years, the descriptive evidence in
section 4.1 indicated an increase in yields over time. This finding is here con-
firmed by the positive and significant trend that indicates an average increase
of 0.8 hkg in yields per year due to better technology, more knowledge and
improved management practices..

Following the preceding discussion and model (3) the vector of climatic vari-
ables consists of observations on temperature, precipitation and potential
evaporation over several stages 1, ...,m of the growth process of wheat, from
sowing in September till harvesting in August. This group of meteorological
controls shows a high joint significant, thus substantiating the impact of the
weather for the cultivation of crops. I have chosen a second-order specification
of the meteorological effects, as there is a natural saturation of wheat growth
with respect to both precipitation and temperature. The regression indicates
that the weather, especially in the autumn and winter, determines the yield.
Both temperature and precipitation show hump shaped effects on yields in the
first 6 month of wheat’s growing season. This reflects that high precipitation
in the autumn can hinder the optimal sowing and postpone it. The seedlings
are therefore smaller when the winter starts and take longer in the spring to
regain the lost growth, reducing overall growth. These results broadly confirm
findings in Olesen et al. [2000].

6.3 Yield estimation II

In the data descriptive part above I gave some evidence of regional differences
in wheat production, e.g. the variation in yields in the single years across
counties in figure 3(b). This is followed up by a regionally differentiated model
for wheat yields, where I use the unique local dimension of the data assembled
in the present study.

For this purpose, Denmark is divided into 2 regions. The peninsular Jutland
in the west with rather sandy soils and higher precipitation figures forms the
one region of analysis, while the islands in the eastern part of the country
with their rather loamy soils and less precipitation form the other region. The
regional differences are also substantiated by a quantile-quantile-plot of wheat
yields in eastern Denmark against wheat yields in western Denmark, see figure

21



5. The plot indicates an upward shift in location from west to east Denmark,
as soils in the eastern parts are overall more fertile than soils in Jutland.

Figure 5: Regional differences in observed yields

These regional differences are caused by different environmental composi-
tions and thus we should expect a differentiated impact of weather on wheat
yields. Tabel 8 (in the appendix) reports the estimation results for this model,
where I use bimonthly data for temperature and precipitation instead of tri-
monthly/seasonal data as in the previous model. The meteorological data has
been differentiated by regions, which here are defined as Jutland on the one
hand and the islands on the other hand9.

The impact of non-weather variables was discussed above and is roughly un-
changed, but overall the model shows a better fit than the previous one. The
variables ’. . . , east’ denote the additional impact of temperature or rain for
the eastern region, and the better fit of the model is confirmed by the clear
significance of the regional differentiation in table 8. We can therefore con-
clude that there are regional differences in the sensibility of wheat yields to
weather and climate change. I will use this to analyze regional differences in
the effect of climate change on agriculture.

7 Yield Simulations

The present section uses the estimation results from the previous section
to simulate wheat yields under the climate forecast scenario discussed in
section 2.

9A further regionalisation into 5 regions was tested, but the results were not as clear-cut
as the east-west divide and fit the data worse.
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We have repeatedly stressed the importance of using local and intra-year-
differentiated weather data to model agricultural production, as the harvested
yield will depend on the local weather conditions, for instance in October and
in July. This fits with the scenario data, where we have monthly means of
precipitation and temperature for a 25×25km grid for the years 2070 to 2100,
but the issue at hand is to decide how to use this data to forecast. For a start,
I will use monthly means in temperature and precipitation over all 29 years10,
as a central estimate of the full distribution of monthly measures. Alternatives
to use in future work are the median and other quantiles of the meteorological
distributions to assess more extreme weather outcomes.

I will first present a simulation using the overall model from estimation I, with-
out any regional distinctions, before I apply estimation II to gain information
on the regional differences in yield changes.

7.1 Forecast with overall seasonal-means - Estimation I

Figure 6(a) plots several nonparametric yield distributions. As a base for
comparison, the distribution of observed yields from the agricultural data has
been plotted. To test the fit of the estimated model for wheat yields, the
model is first applied to the observed agricultural and meteorological data
1992-2003. The estimated distribution of wheat yields can be seen to fit the
original overall distribution of wheat yields reasonably well. The estimates
seem to be a little more centered with lower tails, which is probably the result
of the estimation using an expected means-model. To do better on these
details, one could apply quantile regressions in the second step. Bushinsky
[1998], for instance, has applied quantile methods in a selection context.

The third distribution in figure 6(a) shows the distribution of forecasted yields,
which have been generated by inserting the predicted monthly means of tem-
perature and precipitation into the estimated model from regression I (table
7). The other production factors are kept unchanged.

It is seen that the mean of the forecasted yields is significantly lower than the
mean of the presently observed yields. This is in line with other findings for
wheat yields in a Danish climate, that a higher temperature ceteris paribus
leads to faster ripening of the crop and therefore a lower yield [Olesen et al.,
2000, for instance].

To compare not only the change in location, as represented by the mean, but
also the change in dispersion, figure 6(b) presents a quantile-quantile plot of
the present yields against the forecasted yields. The decrease in the location of
the distribution is confirmed by the - in relation to the diagonal - downward
shifted quantile-quantile plot. But moreover the q-q-plot is slightly tilted
clockwise compared to the diagonal, indicating a small reduction in the overall
variance of yields.

We are, as noted before, not able to assess the positive effect of an increased
CO2-concentration into account. Olesen & Bindi [2002] quote experimental

10The reorganization of the data into agricultural years September-August looses 1 year
of the full 30-year time span.
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Figure 6: Comparing present and forecasted wheat yield distribu-
tions
(a) Plot of distributions

(b) The distributional impact of climate change
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results from Downing et al. [2000] that indicate a mean wheat yield increase
of 28% from a doubling of the current CO2-concentration in the atmosphere.
This corresponds approximately to the lower bound in the prediction for CO2-
concentrations by IPCC [2001a] in the year 2070. But IPCC [2001b] mentions
that productivity gains in crops as a response to increased CO2-concentrations
are smaller under field conditions than indicated by plant-pot experiments.
With simulations of wheat yields in an integrated assessment model, Antle
et al. [2004] find a decrease of between 20% and 40% in wheat yields without
the CO2-fertilization, while the inclusion of the CO2-effect leads to an overall
slight increase. While their first result thus lends support to our findings
the latter points to the supplementarity of the present assessment and the
agronomic approaches.

Technological change

A reservation to take to the presented forecast of the yield distribution is the
long time span between on the one hand the base data on which we have
estimated the models, and on the other hand the climate prediction that are
inserted to form the forecasts. As the models are estimated in the data-specific
context of the years 1992 to 2003, the estimated model parameters reflect the
current technological restrictions on agricultural production. However, it is to
be expected that agricultural technology will improve over the next 70 years in
the form of higher-yielding and adapted seed corn as well as better cultivation
techniques. Figures 3(b) and 4 already gave an indication that yields showed
an increasing trend even over the 14 years of agricultural data analyzed. To
capture this process a trend variable was inserted into the model and indicated
an increase in yields over time, see table 7.

The predictions and illustrations above were undertaken in the present data-
specific context, so no technological progress was assumed. In the following I
will undertake a small sensitivity analysis to illustrate the impact of different
scenarios for technological progress.

In figure 7 I have again plotted the present distribution of yields as the base-
line, but now yields are forecasted with a linear trend under the present and
predicted climate, respectively. Now the forecasted yields under the predicted
climate scenario exhibit a higher mean than the present wheat yield distribu-
tion. The increase in yields from technological progress has undone the ’pure’
fall in yields found above in figure 6(a). The combination of climate change
and technological progress shifts the mean of the yield distribution approx-
imately 39% up. However, the earlier documented fall in yields solely from
climate change is still present, as technological progress would have increased
yields far more under a continuation of the present climate. Kim & Chavas
[2003] similarly find evidence for climate change, but also conclude that the
impact of technological change dominated climate change for corn farmers in
the corn belt of the United States.

The used linear specification of technological progress is only one scenario
for future technological change. Figure 8 therefore reports the same results
as in figure 7, but now with a logarithmic specification of the technological
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progress. As expected, this concave functional form reduces the increase in
yields over the time span. Under the present climate regime, mean yields
would increase by approximately 20% over the time span. But the earlier
reported yield fall due to climate change undoes this technologically induce
increase. The combined effect of climate change and technical change leads to
small fall in mean yields, mainly due to a smaller right tail of the distribution.
I will discuss the issue of technological adaptation to climate change in more
detail in section 8.

7.2 Forecasts by regions - Estimation II

The estimation results in table 8 showed that there are clear regional differ-
ences in the sensibility of wheat yields to weather outcomes. This conclusion is
here taken up to produce regionally distinct forecasting scenarios, illustrated
in figure 9.

The model is shown to fit nicely to the observed distribution of current wheat
yields, as the fitted distribution using the base data almost overlaps with
the observed distribution, although the tails still seem a little lower. See the
discussion on this issue in the previous section.

For the regional analysis, Denmark has been subdivided into an eastern re-
gion combining the islands of Denmark, and a western part with Jutland, as
discussed above. The change to the new climate regime produces an overall
leftward shift of the two regional distributions, in line with the earlier findings
for the full sample. The disaggregation of the forecast by regions shows that
the impact of climate change is predicted to be higher in Jutland than in the
eastern parts of the country. This exacerbates the present regional differences
in wheat yields, where yields on the eastern islands are overall higher than
the yields on Jutland (figure 5). The intra-year variability of precipitation is
predicted to increase, and the fall in yields could therefore be attributed to
the lower capacity of sandy soils to hold water and act as a buffer against
temporary precipitation surpluses and shortfalls.

For this forecast of course the same comments on the effect of CO2 as well as
on technological progress apply, as discussed above. However, these caveats
have a more or less uniform impact on yields, and they will therefore not
change the relative conclusion, that Jutland under the ecological as well as the
present socio-economic conditions (e.g. the higher prevalence of cattle farms)
will be harder hit by climate change. But the most important conclusion to
draw from this result is the regional difference in the effect of climate change
on agriculture. This gives better information to deal with climate change,
especially for the specification of a suitable policy context, as I will discuss
in the following section. Another conclusion from the regional disaggregation
is that the source of the difference needs to be analyzed in more detail. It is
namely of interest for a policy debate to see whether the difference is caused by
ecological conditions for agriculture (e.g. sandy soils) or by the socio-economic
context (for instance cattle rearing vs. hog farming), in order to improve the
understanding of potential adaptation strategies.
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Figure 7: Comparing present and forecasted wheat yields with linear techno-
logical progress

Figure 8: Comparing present and forecasted wheat yields with decreasing
technological progress

8 Adaptation

With changes in the climate, adaptation to these changes will have to occur
in agriculture, as the climatic input into production cannot be substituted on
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Figure 9: Forecasted wheat yield distributions with regional dif-
ferentiation

any reasonable scale. From ancient times, farming systems have adapted to
changing economic conditions, technologies, resource availabilities and popu-
lation pressure. The effects of climate change on agriculture will therefore in
a similar spirit be met by changes in managerial decisions on crop choice, soil
management and applied technologies. Changes in the climate can for instance
be countered by changes to crop sorts that are better suited to the new climate
regime. The frequency and timing of farm operations will be adapted to the
changed growth pattern of the crops. An increase in temperatures and the
following shorter duration from sowing to ripening will for instance lead to a
change in the optimal sowing data, as documented by Olesen [2000]. Changes
in the yearly distribution of precipitation can lead to moisture shortages for
parts of the year, as it is also the case on some sandy soils in Denmark today.
This is already today offset by irrigation, and extended moisture shortages
could thus be met by the application of technology (if it is profitable to do
so).

An important role in the adaptation to climate change will be assigned to
technological developments. The past challenges to agricultural development
have mostly been met by technological conquests of new technologies. In the
present models used for forecasting wheat yields under the new climate regime
the technological progress in agricultural production was modelled using a time
trend. As noted, this specification might not be fully correct. Still, it gives
an indication that technological developments have to be taken into account
for the effects of climate change. In agricultural economics, the analysis of the
generation and adoption of new technologies constitutes a large field, see for
instance the review by Sunding & Zilberman [2001]. Adoption of new tech-
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nologies in agriculture and thus technological adaptation to climate change is
highly heterogeneous and depends on a number of factors. Firstly, agricultural
technology is embodied both in physical capital such as buildings and machin-
ery, as well as in variable inputs such as seeds, fertilizer and pesticides. These
two classes of inputs into agricultural production are distinguished by their
fixed nature, where the former requires long-term investments while the latter
can be changed with short notice. Secondly, the decision to adopt new tech-
nology is highly dependent on individual abilities to learn and heterogeneous
constraints on the access to information and to credit for investment.

8.1 The Policy Environment and Adaptation

Another major force on the structure of agricultural production and therefore
the adaptation to climate change is the policy environment.

A general question for policy considerations with regard to climate change is
the aim of the policies. Farming policies can on the one hand be used to sup-
port the existing (farming) structures, and can on the other hand be pro-active
and back adaptive measures by individuals. The latter can happen through
economic incentives or through the provision of a supportive infrastructure.

The common agricultural policy (CAP) for the European Union is a major
determinant of the structure and development of European agriculture. Pol-
icy instruments can overrule necessary adaptation impulses and freeze a pro-
duction set-up. In as far as subsidies, price stabilization programmes and
regulatory policies dominate the incentives to adapt to a changing climate,
a policy environment such as the CAP can counteract adaptation. But the
costs of the common agricultural policy as well as demands through the World
Trade Organization have over the last decades implied a trend towards more
market-based price determination coupled with area-based income subsidies
and structural programmes. This leaves the incentives of the single farmer for
adaptation in place.

For the adaptation to climate change specifically the provision of information
stands out as a possible supportive measure. Information about climate change
and its (locally and regionally differentiated) consequences is the crucial factor
for an efficient adaptation of agricultural structures to the changing environ-
mental conditions. The adaptation of crop varieties to local climate and soils
as well as the composition of fertilizer are based on agronomic models and/or
experimental evidence. As climate change progresses, this information will
increasingly have to be updated to suit a new climate regime at a certain lo-
cation. Information shows public good characteristics, as the use of a piece
of information by one person does not reduce the possible consumption of the
same piece of information by another. The private provision of information is
therefore inefficient, as the single agent does not take the full benefit for the
others into account. There is therefore a role for social provision of information
on the (local and regional) consequences of climate change.
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9 Conclusion and Discussion

New and unique regional climate prediction data shows the regional effects
of climate change for weather outcomes in Denmark. The present study has
utilized these data to forecast and discuss the impacts of climate change on
Danish agriculture, namely on the distribution of wheat yields. Using a large
data set with farm-level information combined with data on local meteorolog-
ical observations, a fixed effect panel data model for wheat yields is estimated,
including a prior tobit model to correct for the selection bias from wheat
production.

The model is estimated in two versions. In the first all farm observations are
treated jointly. In the second the data is differentiated regionally to gain an
insight into the regionally different impacts of climate on agriculture. Both
models are seen to fit the observed distribution of wheat yields well, and
climate change is found to have strong negative impact on the location of the
distribution under the current technological constraints on agriculture. This
fall in yields is transformed into a net increase in the location of the yield
distribution once we take account of the impact of technological progress on
yields.

For the regional analysis, Denmark has been subdivided into an eastern re-
gion combining the islands of Denmark, and a western part with Jutland. A
difference is found in the effect of climate change for the two regions, where
Jutland experiences a larger decrease in mean yields. In this context I point to
the need for further studies on the specific cause of the regional differences of
the impact as well as the informational needs on climate change, in particular
with respect to these localized effects.

In the econometric approach and the use of data from privately managed farms,
the study differs from agronomic approaches, which mainly use experimental
data and crop growth simulation models for yield modelling. The present
approach can integrate the indirect effect of climate on yields (for instance
through its effect on pests and diseases), the real-life management bias as well
as scenarios on technological progress. The agronomic approaches are better
able to study the growth stages of crops and can simulate possible but yet
unobserved changes, such as the impact of an increasing CO2-concentration.
As such, these approaches supplement each other, yielding specific informa-
tion on a variety of issues for the impact of climate change on agriculture.
The final prognosis on the effect of climate change on agriculture is a highly
complex picture, and the different approaches can shed light on specific parts
of it. And the inherent lack of knowledge on future technological development
paths and possible adaptations through changes in agricultural practices and
technological will remain.

The study has focused on the impact of climate change on one crop, winter
wheat. Analysis along similar lines can be undertaken for other crops to gain
profiles of climate change effects. Assembled, such studies can enter into farm-
level multi-crop and -activities models11 to predict changes in crop rotations

11For instance the econometric agricultural sector model ESMERALDA maintained by
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and aggregated effects on agricultural supply.

We have focused on the changes in wheat yields from climatic conditions in
real life settings for privately managed farms. To describe the final impact of
climate change on agriculture and individual farmers, one needs to consider
the income of the farmer, which is determined not only by the yields but
simultaneously by the the price-profile of the crop.
The price variability in agricultural markets in Europe is expected to rise in
the wake of reforms of the CAP and an increasing integration of EU-markets
in the world trade of farm goods. If we describe the price of wheat over time
by a probability distribution, the correlation between the yield at the single
farm and the market price for wheat has to be taken into account to give
a full picture of the uncertainty of income facing the farmer. With large-
scale general climate outcomes, a negative correlation between yield and price
can appear, and the variability of the economic return will be less than the
variability of the wheat yields. But as the weather outcomes vary across the
market space - for Denmark the European Union - a negative shock to yield
in Denmark might as well be balanced by a positive shock to yields in other
parts of Europe. We can thus not ex-ante conclude on the correlation of yield
and prices, and the variability of income.

In the presented research a rich collection of data has been assembled com-
bining agricultural farm-level data with detailed local meteorological data and
supplemented with far-reaching forecasting data. This information will surely
give rise to further studies on the effect of weather and climate change on
agriculture.

the Danish Research Institute of Food Economics.
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APPENDIX

A PRUDENCE

The PRUDENCE (”Prediction of Regional scenarios and Uncertainties for
Defining EuropeaN Climate change risks and Effects”)-project was a European-
scale collaboration of 21 European research institution under the EU 5th
Framework program for Energy, environment, and sustainable development
between 2001 and 2004.

The following summary of PRUDENCE is taken from http://prudence.dmi.dk/

public/project summary.html.

A.1 project summary

Problem to be solved:

European decision-makers in government, non-governmental organisations (NGOs),
and industry as well as the general public need detailed information on fu-
ture climate. In this way it becomes possible to evaluate the risks of climate
change due to anthropogenic emissions of greenhouse gases. Projections of
future climate change already exist, but are deficient both in terms of the
characterisation of their uncertainties and in terms of their regional detail. To
date, the assessment of potential impacts of climate change has generally relied
on projections from simple climate models or coarse resolution Atmospheric-
Ocean General Circulation Models (AOGCMs), neither capable of resolving
spatial scales of less than 300km. This coarse resolution precludes the simula-
tion of realistic extreme events and the detailed spatial structure of variables
like temperature and precipitation over heterogeneous surfaces e.g. the Alps,
the Mediterranean or Scandinavia. Simple models include, at best, a limited
physical representation of the climate system.

Scientific objectives and approach:

PRUDENCE is a European-scale investigation with the following objectives:

1. to address and reduce the above-mentioned deficiencies in projections;

2. to quantify our confidence and the uncertainties in predictions of future
climate and its impacts, using an array of climate models and impact
models and expert judgement on their performance;

3. to interpret these results in relation to European policies for adapting
to or mitigating climate change.

Climate change is expected to affect the frequency and magnitude of extreme
weather events, due to higher temperatures, an intensified hydrological cycle
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or more vigorous atmospheric motions. A major limitation in previous stud-
ies of extremes has been the lack of: appropriate computational resolution -
obscures or precludes analysis of the events; long-term climate model integra-
tions - drastically reduces their statistical significance; co-ordination between
modelling groups - limits the ability to compare different studies. These three
issues are all thoroughly addressed in PRUDENCE, by using state-of-the-art
high resolution climate models, by co-ordinating the project goals to address
critical aspects of uncertainty, and by applying impact models and impact as-
sessment methodologies to provide the link between the provision of climate
information and its likely application to serve the needs of European society
and economy.

Expected impacts:

PRUDENCE will provide a series of high-resolution climate change scenarios
for 2071-2100 for Europe, characterising the variability and level of confidence
in these scenarios as a function of uncertainties in model formulation, natu-
ral/internal climate variability, and alternative scenarios of future atmospheric
composition. The project will provide a quantitative assessment of the risks
arising from changes in regional weather and climate in different parts of Eu-
rope, by estimating future changes in extreme events such as flooding and
windstorms and by providing a robust estimation of the likelihood and mag-
nitude of such changes. The project will also examine the uncertainties in
potential impacts induced by the range of climate scenarios developed from
the climate modelling results. This will provide useful information for climate
modellers on the levels of accuracy in climate scenarios required by impact
analysts. Furthermore, a better appreciation of the uncertainty range in cal-
culations of future impacts from climate change may offer new insights into
the scope for adaptation and mitigation responses to climate change. In order
to facilitate this exchange of new information, the PRUDENCE work plan
places emphasis on the wide dissemination of results and preparation of a
non-technical project summary aimed at policy makers and other interested
parties.
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A.2 PRUDENCE grid-data

A number of participants in the PRUDENCE-project have completed RCM-
simulations for all of Europe. The present study focuses on Denmark, cor-
responding to the grids defined by the rotated longitudes 79-98 and rotated
latitudes 94-109. The figure below illustrates the 25km-gridnet covering Den-
mark.
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B IPCC Scenarios for Climate Change

Source: IPCC [2001a]
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C Estimation results
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Table 7: Regression I - General
Wheat, hkg/ha
Pct. clayey soils -0.658

(0.498)
Organic -15.396***

(1.804)
Pesticides 0.014***

(0.005)
Mineral fertilizer -0.002

(0.006)
Pct. grain, lagged -1.463***

(0.399)
Full-/Part-time 0.079

(0.788)
Trend 0.797***

(0.084)
Rain, autumn 0.043***

(0.012)
Rain, autumn, squared -0.000***

(0.000)
Rain, winter 0.039***

(0.010)
Rain, winter, squared -0.000**

(0.000)
Rain, spring 0.013

(0.020)
Rain, spring, squared -0.000**

(0.000)
Rain, summer -0.012

(0.011)
Rain, summer, squared -0.000

(0.000)
Temp., autumn 7.919***

(1.697)
Temp., autumn, squared -0.486***

(0.095)
Temp., winter 1.438***

(0.242)
Temp., winter, squared -0.252***

(0.057)
Temp., spring -5.003**

(2.424)
Temp., spring, squared 0.190

(0.171)
Temp., summer 0.317

(2.801)
Temp., summer, squared -0.054

(0.088)
Constant 59.762**

(26.277)
Observations 14877
Farms 5112
F(34,9731), overall 27.64***
F(12,9731), tobit-res.a 8.24***
F( 16, 9731), meteorol. var. 36.37***
R2 within 0.09
R2 between 0.13
R2 overall 0.09

Sign. levels: ∗: 10% ∗∗: 5% ∗ ∗ ∗: 1%

(Standard errors in parentheses)

a
The estimates for the tobit-residuals are not reported.
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Table 8: Regression II - Regional differentiation
hkg wheat pr. hectare
Pct. clayey soils -3.128*

(1.842)
Pct. clayey soils, squared 1.568

(1.770)
Organic -14.163***

(1.839)
Pesticides 0.015***

(0.005)
Mineral fertilizer 0.000

(0.006)
Pct. grain, lagged -1.467***

(0.404)
Trend 0.619***

(0.085)
Rain Sept.-Oct. -0.015***

(0.005)
Rain Sept.-Oct., east -0.001

(0.009)
Rain, Nov.-Dec. -0.009*

(0.005)
Rain, Nov.-Dec., east 0.024*

(0.012)
Rain, Jan.-Feb. 0.011*

(0.006)
Rain, Jan.-Feb., east -0.001

(0.011)
Rain, March-April -0.036***

(0.005)
Rain, March-April, east 0.029***

(0.009)
Rain, May-June -0.011*

(0.006)
Rain, May-June, east 0.042***

(0.010)
Rain, July-Aug. -0.017***

(0.004)
Rain, July-Aug., east 0.015**

(0.007)
Temperature, Sept.-Oct. -0.682***

(0.241)
Temperature, Sept.-Oct., east 0.374

(0.330)
Temperature, Nov.-Dec. 0.804***

(0.230)
Temperature, Nov.-Dec., east 1.373***

(0.379)
Temperature, Jan.-Feb. 1.126***

(0.256)
Temperature, Jan.-Feb., east -1.832***

(0.429)
Temperature, March-April -0.349

(0.447)
Temperature, March-April, east 1.952***

(0.756)
Temperature, May-June -2.135***

(0.359)
Temperature, May-June, east -0.529

(0.521)
Temperature, July-Aug. -0.213

(0.153)
Temperature, July-Aug., east -0.472**

(0.228)
Constant 104.989***

(3.885)
Observations: 14558; Farms: 5015
R2within: 0.10; R2between: 0.25; R2overall: 0.20
F(42,9501), overall 25.02***
F(12,9501), tobit-res.a 7.84***
F( 24, 9501), meteorol. var. 8.41***
F( 12, 9500), reg. difference 7.86***
Sign. levels: ∗: 10% ∗∗: 5% ∗ ∗ ∗: 1%; Standard errors in parentheses)

a
The estimates for the tobit-residuals are not reported.
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