The Environmental Economic Conference 2017 Skodsborg, Copenhagen 25/8/2017

Principles of discounting

 comments to new MOF guidelines on socio-economic assessment

Mikael Skou Andersen, cand.scient.pol., Ph.D.

Discount rate recommendation

Tabel A1.1Den samfundsøkonomiske diskonteringsrente

	0-35 år	36-70 år	>70 år
Diskonteringsrente	4 pct.	3 pct.	2 pct.
Risikofri kalkulationsrente	2,5 pct.	2,25 pct.	2 pct.
Risikopræmie	1,5 pct.	0,75 pct.	0 pct.

- Approach: descriptive method
- Components; risk free discount rate & risk supplement
- Declining over time to reflect uncertainty of future

10 year state debt bonds benchmark for stipulated risk free interest rate of 4.5%

 "Konkret er den risikofrie kalkulationsrente fastsat <u>ved at observere</u> <u>den rente, som markedet fastsætter på et risikofrit aktiv</u>, der her anses bedst repræsenteret ved renten på statsgælden fratrukket den forventede inflation. I Finansministeriets fremskrivninger af dansk økonomi forventes <u>i ligevægt en rente på lange statsobligationer på</u> <u>4,5 pct</u>. og en inflation på 1,8 pct., hvilket giver en realrente på 2,6 pct. Baseret herpå (og afrundet) er den risikofrie kalkulationsrente fastsat til 2,5 pct. for de første 0-35 år af projektperioden" (Appendix A1)

Bilagstabel B.3									
Nøgletal for dansk økonomi (mellemfristet sigt)					Finansredegørelse 2014 · Januar 2014				
	2012	2013	2014	2015	2016	2017	2018	2019	2020
Pct.					·				
Obligationsrente	1,4	1,8	2,1	2,6	3,1	3,7	4,2	4,8	4,8

Recent market observations would suggest 2%

YEAR	IR	INFL	NET IR
2000	5,89%	2,50%	3,39%
2001	5,60%	2,90%	2,70%
2002	5,06%	2,40%	2,66%
2003	3,72%	2,40%	1,32%
2004	4,17%	2,10%	2,07%
2005	3,85%	1,20%	2,65%
2006	3,95%	1,80%	2,15%
2007	4,12%	1,90%	2,22%
2008			_
2009	4,10%	3,40%	0,70%
2010	2,75%	1,30%	1,45%
2011	2,80%	2,30%	0,50%
2012	1,63%	2,80%	-1,17%
2013	1,72%	2,40%	-0,68%
2014	1,71%	0,80%	0,91%
2015	0,78%	0,60%	0,18%
2016	0,40%	0,50%	-0,10%

Figur 2.6

Rente på 10-årige statsobligationer for ud-

valgte lande.

Økonomisk Redegørelse · Maj 2017

Average 2009-2016: 2% (net of inflation: 0,2%)

Is a risk supplement justified ?

MOF guidelines:

 systematic project risks; reflecting volatility in the marginal utility of consumption (cf. NOU, 2012)

Guide to Cost-Benefit Analysis of Investment Projects

Economic appraisal tool for Cohesion Policy 2014-2020

EU guidelines:

 "risk supplement not to be included because society as a whole, or the government, has a much larger portfolio than any private investor has, and consequently is able to exploit risk pooling"

EU: Social rate of time preference approach

- "the rate at which society is willing to postpone a unit of current consumption in exchange for more future consumption"
- Ramsey (1928): *SRTP* = *p* + *e*·*g*
 - where p is time preference, g is growth and e is elasticity of marginal utility of consumption
- Elasticity of marginal utility of consumption, e, measured as the progressivity of national personal income taxes; e=ln(1-t')/ln(1-t)
 - where t' and t are respectively the marginal and average income tax rates for an average tax payer
- Pure time preference, *p*, measured as population level mortality rate (1%)

Final comments and conclusions

 While MOF recommends a short term discount rate of 4%, the European Commission approach suggests 3% perhaps not a big deal

However;

- A fixed 'equilibrium' benchmark for the state bond interest rate and risk supplement in MOF guidelines causes rigidity, e.g. for countercyclical measures
- Would it be too much to hope for a discount rate formula in updated annex ?

Thank you!

AARHUS UNIVERSITY (DENMARK)

• Bonus slides

Value of statistical life (VSL)

NB: VSL is not the value of a human life as such but reflects preference for risk reduction

Preference for risk reduction determines indifference curve

Marginal substitution-rate between wealth and mortality risk (for defined time period) defines VSL

If WTP is 200 € for a risk reduction of 1/5.000/yr, then VSL is 1 mill. €

EU: Hypothetical valuation

USA: Wage-risk studies

Implications;

- WTP depends on initial risk
- Individual indifference curve may depend on age, income etc.

Deriving VOLY from VSL

Acute VOLY

$$VSL = VOLY_r \cdot \sum_{i=a+1}^{T} a^{i} P_i (1+r)^{i-a-1}$$

Where *a* is the average age of the age group whose VSL is being estimated, _aP_i is the conditional probability of surviving up to the year *i* having survived to the year *a*, T is the upper age bound and r is the discount rate

Chronic VOLY

$$\text{VOLY}_{chronic}^{r} = \sum_{i=1}^{i=T} \frac{\text{YOLL}_{i}}{\text{YOLL}_{tot}} \cdot \frac{\text{VOLY}_{r}}{(1+r)^{i-1}}$$

• where YOLL_i is the number of years of life lost as a result of an increment in the hazard in year I in each future year, and YOLL_{tot} is the total number of years of life lost in the population

Problem: a discount rate is superimposed by the analyst