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Motivation

Climate change is unprecedented.

www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide

How to quantify optimal/reasonable/good climate policy?

combine economic modeling, science, and “subjective
judgements”

use integrated assessment models (IAMs)

This talk: How to capture “subjective judgements” alias
uncertainty & what is the impact on the policy level?
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Uncertainty Example: Feedback and Climate Sensitivity
II. Feedbacks, Uncertainty, & SCC

What are we uncertain about? Climatic feedbacks

Examples of feedbacks:

Water vapor,

Melting permafrost,

Lapse rate response

Gulf stream weakening

Ice-albedo . . .
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Uncertainty Example: Feedback and Climate Sensitivity

What are we uncertain about? Climate Sensitivity

Warming from doubling CO2

concentration w.r.t.
pre-industrial level
(logarithmic relation)

IPCC:

No best guess (anymore)
Within 1.5◦C and 4.5◦C with
2/3 subjective probability.
Much higher values possible.

Very different worlds at

1.5◦C, 4.5◦C, or 6◦C.
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Uncertainty Examples

Other uncertainty examples:

Damage uncertainty

Technological uncertainty (adaptation, mitigation)

Can we outgrow climate change?

Tipping points: (potentially irreversible) shifts in climate
or ecosystem dynamics

Policy effectiveness & uncertainty

Strategic uncertainty (global game)
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Methodological Overview

Methodological background:

2-3 decades of deterministic models: use best guess

1-2 decades of “Monte Carlo”:
average many deterministic worlds

recent years + Kelly & Kolstad (1999): stochastic IAMs

Difficulty with the latter: “Curse of dimensionality”

Current approaches

reduced form models

DICE-based numeric models

closed-form models

general analytic insights

advanced numeric approximation methods
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Questions

Questions guiding the presentation:

How does uncertainty affect

the level of optimal∗ policy?
∗=advice on how we should set/change policy levels because of

uncertainty

what matters most for the result?

parametrically,
structurally,
conceptually
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Roadmap

Will focus on example of climate (sensitivity) uncertainty

1 Intro

2 Numeric quantification – analytic structure

3 Role of learning

4 Tipping Points – numeric quantification – structure
(does tipping change things?)

5 Closed-form analysis – parametric & structural insights

6 Conclusions
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Related Literature

Some literature on Climate sensitivity uncertainty

The numeric pioneers: Kelly & Kolstad (1999, JEDC)

Other numeric work: Leach (2007, JEDC), Kelly & Tan
(2015, JEEM), Lemoine and Rudnik (2018, WP),

More stylized: Weitzman (2009 ReStat, 2012 ERE) &
Millner (2013, JEEM) (fat tails), Dietz & Venmans (2019,
JEEM)

Partly analytic: Lemoine & Traeger (2014 AEJ:Policy,
16 JEBO), Golosov et al. (2014, E), Traeger (2014/18, WP
ACE), Anderson et al. (2016, WP), Lemoine (2017, WP),
Hambel & Kraft (2018, WP), Van den Bremer & van der
Ploeg (2019, WP)

Similar but less literature on growth and damage uncertainty.
Next section based on Pricing Climate Risk with Svenn Jensen.
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Social Cost of Carbon

DICE-style integrated assessment model

10 / 48



Intro CRP Formula Result Quantification Numerics & Learning Tipping Domino ACE Conclusions

Social Cost of Carbon

What is the welfare cost of one additional ton of emissions E0?
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Social Cost of Carbon

What is the welfare cost of one additional ton of emissions E0?

SCC0 = − 1
u′

0(c0)
IE0

∞∑

t=1

t∑

τ=1
u′t(ct)

∂Ft

∂Tt

∂Tt

∂CO2,τ

∂CO2,τ

∂E0
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Climate Risk Premium: Formula

When do we get a climate risk premium?

SCC0 = − 1
u′

0(c0)
IE0

∞∑

t=1

t∑

τ=1
u′t(ct(s))

∂Ft

∂Tt(s)
∂Tt

∂CO2,τ
(s)

∂CO2,τ

∂E0

Positive premium iff SCC convex in climate sensitivity s.

Jensen’s inequality

Sign not obvious, s affects:

1 temperature sensitivity to emissions ∂Tt

∂CO2,τ
(linear),

2 temperature level Tt and thereby
productivity
consumption level ct.
marginal utility

11 / 48



Intro CRP Formula Result Quantification Numerics & Learning Tipping Domino ACE Conclusions

Climate Risk Premium: Formula

When do we get a climate risk premium?

SCC0 = − 1
u′

0(c0)
IE0

∞∑

t=1

t∑

τ=1
u′t(ct(s))

∂Ft

∂Tt(s)
∂Tt

∂CO2,τ
(s)

∂CO2,τ

∂E0

Positive premium iff SCC convex in climate sensitivity s.

Jensen’s inequality

Sign not obvious, s affects:

1 temperature sensitivity to emissions ∂Tt

∂CO2,τ
(linear),

2 temperature level Tt and thereby
productivity
consumption level ct.
marginal utility

11 / 48



Intro CRP Formula Result Quantification Numerics & Learning Tipping Domino ACE Conclusions

Climate Risk Premium: Formula

When do we get a climate risk premium?

SCC0 = − 1
u′

0(c0)
IE0

∞∑

t=1

t∑

τ=1
u′t(ct(s))

∂Ft

∂Tt(s)
∂Tt

∂CO2,τ
(s)

∂CO2,τ

∂E0

Positive premium iff SCC convex in climate sensitivity s.

Jensen’s inequality

Sign not obvious, s affects:

1 temperature sensitivity to emissions ∂Tt

∂CO2,τ
(linear),

2 temperature level Tt and thereby
productivity
consumption level ct.
marginal utility

11 / 48



Intro CRP Formula Result Quantification Numerics & Learning Tipping Domino ACE Conclusions

Climate Risk Premium: Formula

Recall precautionary savings motive:

Uncertainty increases my savings if

more wealth reduces my pain from shocks (risk aversion)

Captured by

Prudence: Prud= −u′′′

u′′ ∗ c

rather than

Risk Aversion: RRA= −u′′

u′ ∗ c

Here a much richer setting:
Not shocking marginal utility argument directly or linearly
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Climate Risk Premium: Formula

Keep definitions of

Prudence: Prud= −u′′′

u′′ ∗ c

Risk Aversion: RRA= −u′′

u′ ∗ c

and analogously define for damages:

Dam2=
F ′′

F ′ ∗ T : Damage convexity in temperature,

Dam3=
F ′′′

F ′′ ∗ T Marginal damage convexity in temperature.

Keep in mind:

climate sensitivity hits various terms of the formula

→֒ expect interaction terms
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Climate Risk Premium: Formula

Also need to translate climate sensitivity uncertainty into
resulting temperature and consumption uncertainty:

ǫT,s: Temperature elasticity w.r.t. climate sensitivity,

ǫc,s: Consumption elasticity w.r.t. climate sensitivity

Assumptions making dynamic problem analytically tractable:

A1 Fix Investment & emissions at deterministically optimal
level

A2 Temperature is linear climate sensitivity
Basically by definition (satisfied in DICE)

ǫT,s will suffer most from assumption A1. But:
Can get a good approximation of true ǫT,s from a (numeric)
deterministic model (“adjusted formula”).
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Risk Premium

Proposition 1: Uncertainty over climate sensitivity increases
the social cost of carbon contribution from a given period if and
only if Xt(·) ≡

RRA ǫc,s
[
2

︸ ︷︷ ︸

direct
risk

aversion

+Prud ǫc,s
︸ ︷︷ ︸

welfare
prudence

+3Dam2 ǫT,s
]

︸ ︷︷ ︸

welfare
economy
interaction

+Dam2 ǫT,s
[
2

︸ ︷︷ ︸

direct
damage
convexity

+Dam3 ǫT,s
]

︸ ︷︷ ︸

economy
prudence

is greater than zero.
Under a small risk approximation, the uncertainty premium is

∆SCC0 ≈
∞∑

t=1

t∑

τ=1

βt u
′
t(ct)

u′0(c0)
︸ ︷︷ ︸

consumption
discount
factor

∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0
︸ ︷︷ ︸

marginal
emission
damage

Var(s)

2(IEs)2
Xt(·) (1)
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Temperature Stochasticity

Proposition 2: Under A1, A2, & small risk approximation:
The temperature stochasticity premium is the sum of the per
period contributions proportional to

RRA ǫc,T [Prud ǫc,T + 3Dam2] + Dam2Dam3

Compare: Climate sensitivity uncertainty premium was

RRA ǫc,s [2 + Prud ǫc,s + 3Dam2 ǫT,s] + Dam2 ǫT,s [2 + Dam3 ǫT,s]

→֒ Stochasticity premium misses the direct risk aversion (small)
and the direct damage convexity effect (large).

Reason: Climate sensitivity affects the temperature response to
a given emission unit, a simple temperature shock does not.
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Temperature Stochasticity

Important implication:

Empirical literature usually estimates “climate change impact”
from “temperature stochasticity”.

Yet

Temperature stochasticity and climate change trigger different
optimal responses. Extrapolation of the economic response to
temperature shocks as compared to climate change is more
complex and difficult than usually acknowledged.
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Robustness

Quantification of risk premia (formula vs numeric stoch model)
in USD per ton of Carbon (USD/tC)

RRA=Arrow-Pratt risk aversion ; PRTP= time preference

Risk Premium Formula Full
in USD/tC Orig Adjusted Model error

RRA=2, ρ = 1.5, DICE13 19.0 15.7 15.8 0.7%
RRA = 1.45 29.5 21.1 21.4 1.5%
PRTP ρ = 0.5 34.0 22.3 23.0 3.1%
Mueller-Watson growth 15.7 13.8 14.6 5.5%

DICE 2007 Damages 15.8 13.9 13.0 6.7%
cubic Damages 70 42.3 48.6 12.9%

→֒ Damage functional forms most sensitive.
For cubic small risk approximation kicks in (conjecture)
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Climate Risk Premium - Characteristics

2. What are the important drivers? Adjusted ǫT,s

Note: USD per unit of variance (σ2 ≈ 3)
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Total

D(T ) = 1− 1
1+0.0028T2 frac. of outp.
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Climate Risk Premium - Characteristics

2. What are the important drivers? (Using adjusted ǫT,s)

Note: USD per unit of variance (σ2 ≈ 3)
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Summary

Climate sensitivity risk premium

25-30% premium, about US$ 15-20 in base version of DICE

Damage convexity most important contributor

Risk aversion and third order damage curvature
moderately relevant

Prudence irrelevant

climate sensitivity versus temperature stochasticity have
qualitatively & quantitatively different impacts
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Roadmap

Will focus on example of climate (sensitivity) uncertainty

1 Intro

2 Numeric quantification – analytic structure

3 Role of learning

4 Tipping Points – numeric quantification – structure
(does tipping change things?)

5 Closed-form analysis – parametric & structural insights

6 Conclusions
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Anticipated Learning

Same model with

Anticipated Bayesian Learning

Future decision makers will have more information on
climate dynamics than present decision makers.

Should we wait and see?

Bayesian learning model

hold a belief about climate sensitivity (prior)

Global surface temperature subject to iid shocks

infer “realized” climate sensitivity from temperature

update belief about climate sensitivity
23 / 48
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Anticipated Learning: Illustration

Learning under different true climate sensitivities
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year
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Prior is

3 Celsius in the present

illustration of updating
for “expected draws”
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Anticipated Learning: “Analytic reasoning”

How does the anticipation of learning affect the SCC?
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Anticipated Learning: SCC formula

How does the anticipation of learning affect the SCC?

Without learning:

SCC0 =−
1

u′0(c0)
IE0

∞∑

t=1

t∑

τ=1

u′t(ct)
∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0
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Anticipated Learning: Result

How does the anticipation of learning affect the premium?

2025 2035 2045 2055
year

60

80

100

120

140

160

180

 U
S

$/
tC

SCC new

Dash to dash-dot:

lower speed of learning

by increasing stochasticity

→֒ only a stochasticity effect

Conclude:

Learning has little to no
impact on today’s SCC

Don’t “wait and see”
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Roadmap

Will focus on example of climate (sensitivity) uncertainty

1 Intro

2 numeric quantification – analytic structure

3 Role of learning

4 Tipping Points – numeric quantification – structure
(does tipping “change things”?)

5 Closed-form analysis – parametric & structural insights

6 Conclusions
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Motivation: Economics & Media Attention

Tipping points are used as major argument for a 2◦C target
(adopted e.g. in Copenhagen Accord & Paris Agreement)

Oct 2013: “Are models that show the economic effects of
climate change useless?”, “climate models play down or leave
out “tipping-point” risks that may not affect the climate yet
but could do one day”,
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Our Contribution

IAMs with Tipping points: Lemoine & Traeger (2014,16,16);
Cai & Lontzek (2016,19). Lemoine & Traeger (2016, NCC):

incorporates three kinds of tipping points
into a DICE-style integrated assessment model (IAM)

1 affecting CO2 accumulation in atmosphere
CO2 flow out of atmosphere drops by 50%

1 affecting the warming feedback
eql warming from 2xCO2 3◦C to 5◦C (climate sensitivity)

1 directly affecting economic damage sensitivity
(quadratic→cubic damages)

analyzes interaction between different tipping possibilities

derive optimal climate policy

derive welfare cost of delaying optimal policy
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Our Contribution

Our approach
optimize policy under

Bayesian uncertainty about the threshold location
anticipation of optimal future, state-dependent response to
potential threshold crossing

An�cipates future observa�on, updated prior, op�mal consump�on and policy responses

No Tipping

Safe domain expands

Tipping

Feedback

Dynamics change irreversibly

Temp t

CO2   t

New Emissions

Consump�on

Investment
Other Tipping Scenarios …

Safe domain expands

Tipping

Carbon

Cycle Dynamics change irreversibly

Temp

CO2

New Emissions

Consump�on

Investment
Other Tipping Scenarios …

No Tipping

Safe domain expands

Tipping

Carbon

Cycle Dynamics change irreversibly

Temp

CO2

New Emissions

Consump�on

Investment
Other Tipping Scenarios …

No Tipping

Capt t+1

CO2 t+1

Capt t

Capt

Capt
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Results: Interactions

Background DICE

has “ad-hoc” damage adjustment for missing tipping points
approximately doubles damage coefficient and SCC

We take ad-hoc adjustment out and model explicitly

Our Result:

The three stochastic tipping points double the SCC

→֒ back to original DICE for near term optimal tax
(somewhat different dynamics also w/o actually tipping)

Which interactions are most relevant to SCC?

feedback & damage: +35%

carbon sink & damage: +22%

carbon sink & feedback: +6%

Triple interaction: +50%
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Results: Temperatures

Temperature along optimal trajectory conditional on not having
tipped

Peak temperature decreases from almost 4◦C to just below 3◦C.
Peak temperature reduction slightly less than adding individual
TP effects.
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Post-tipping response

Figure: The effect of a tipping point on post-threshold policy.
Simulations assume that all three tipping points are possible and that
a particular one happens to occur in 2075 as the first tipping point.
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Aversion and Ambiguity

Acknowledging probabilistic ignorance: Ambiguity Aversion

One tipping point only & original DICE damages:
Probability that threshold will ever be crossed

If tipping points not considered by the decision maker

68% chance of ever crossing the unknown threshold
(expected year of crossing conditional on eventual crossing: 2068)

(In parentheses: expected crossing year, conditional on crossing) 35 / 48



Intro CRP Formula Result Quantification Numerics & Learning Tipping Domino ACE Conclusions

Roadmap

Will focus on example of climate (sensitivity) uncertainty

1 Intro

2 numeric quantification – analytic structure

3 Role of learning

4 Tipping Points – numeric quantification – structure
(does tipping change things?)

5 Closed-form analysis – parametric & structural insights

6 Conclusions
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Analytic Integrated Assessment Models (AIAMs)

Analytic IAMs (“of 2nd generation”):
Starting point: Golosov et al. (2014)

more insight than mere numeric models

stochasticity: overcome “curse” of dimension

strategic interaction: again overcoming “curse”

Here: ACE model (Analytic Climate Economy, Traeger 2018)

obtains DICE-style realism in closed form

decodes optimal carbon tax contributions

explains & quantify uncertainty contributions

ACE in particular

models temperature dynamics (global warming)

solves with a general risk attitude

disentangles RRA from IES (unity as in log utility)
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The ACE model

Structure of ACE:

log-utility (deterministic)

Cobb-Douglas production, using the additional

Production function with generic energy sectors Et:
Yt = F (At,Nt,Kt,Et)
with F (At,Nt, γKt,Et) = γκF (At,Nt,Kt,Et) ∀γ ∈ IR+.

Resources, assumption: if scarce then essential

Capital: Either Ramsey + simplified capital depreciation
(10 year step AND/OR exogenous persistence correction)

OR endogenous growth with dedicated “AK + energy”
type capital sector (and arbitrary time step).

Solving for skip theorem

feasible damage function & climate dynamics system
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Climate System

Emissions:
Fossil fuel based energy sources (1, ...Id) emit:

∑Id

i=1
Ei,t

Other (exogenous) CO2 emissions: Eexogenous
t

Other (exogenous) non-CO2 emissions: Gt

Carbon cycle taken from DICE 2013:

Mt+1 = ΦMt + e1(
∑Id

i=1Ei,t + E
exogenous
t ) (2)

Radiative forcing (direct greenhouse effect of CO2)

Ft = η
log

M1,t+Gt

Mpre

ln 2
. (3)

Standard in numeric IAMs (& good Physics)
New to analytically tractable models

Solving for skip theorem

Tractable Atmosphere-ocean temperature dynamics
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Damages & Temperature Dynamics: Functional Forms

Golosov et al. & others solve because after suitable
transformation linear in states
Linear-in-state models solved by affine value function

Proposition 1:

An affine value function of the form

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ⊤

MMt +ϕ⊤

τ τt +ϕ⊤

R,tRt + ϕt

solves ACE if

1 kt = logKt, τt is vector of τi = exp(ξiTi), i ∈ {1, ..., L}

2 Damages: D(T1,t) = 1− exp[−ξ0 exp[ξ1T1,t] + ξ0], ξ0 ∈ IR ,

Damage parameter ξ0 is the semi-elasticity of net
production to transformed atmospheric temperature
τ1,t = exp(ξ1T1,t).
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Proposition 1:

An affine value function of the form

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ⊤

MMt +ϕ⊤

τ τt +ϕ⊤

R,tRt + ϕt

solves ACE if

1 kt = logKt, τt is vector of τi = exp(ξiTi), i ∈ {1, ..., L}

2 Damages: D(T1,t) = 1− exp[−ξ0 exp[ξ1T1,t] + ξ0], ξ0 ∈ IR ,

3 Temperature: Ti,t+1 =
1
ξi
log

(

(1−σi,i+1−σi,i−1)exp[ξiTi,t]

+σi,i+1exp[ξiw
−1
i Ti−1,t] +σi,i−1exp[ξiwi+1Ti+1,t]

)

,

with weighting matrix σ capturing heat exchange

4 Parameters: ξ1 =
log 2
s

≈ 1
4 and ξi+1 = wiξi =

T i−1
eq

T i
eq

ξi.
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Calibration

Summary of Proposition: Characterization of a class of IAMs
with closed-form solution.

Calibration:

Damage function close to DICE
(initially slightly less convex, then more convex)

→ damage parameter ξ0
(semi-elasticity of output to exp temperature increase)

Carbon cycle taken from DICE:

→ Carbon transition matrix Φ

Temperature dynamics calibrated to Magicc 6.0:

→ “Heat” transition matrix σ and, in particular:
speed of atmospheric temperature response to forcing σforc

Time preference, output, and consumption rate are
based on 2018 IMF forecast
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Climate - Temperature Dynamics

Modeling Atmosphere-Ocean Temperature dynamics

A calibration to Magicc6.0 for IPCC’s RCP scenarios,
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RCP 4.5 to 3
RCP 4.5
RCP 6 to 4.5
RCP 6
RCP 8.5
Magicc
GAUVAL

(uses two ocean layers)
to damage fct
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The Social Cost of Carbon: Formula

The optimal carbon tax:

SCCt =
βYt

Mpre
ξ0
︸︷︷︸

damages

[
(1− βσ)−1

]

1,1
σforc

︸ ︷︷ ︸

climate dynamics

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

carbon dynamics

discount factor β

production Yt

preindustrial carbon Mpre

damage parameter ξ0 (semi-elasticity of net production)

temperature dynamics σ (∼ heat transfer) and, in
particular:

speed of atmospheric temperature response to forcing σforc

carbon dynamics Φ (transition matrix)
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The optimal carbon tax: (IMF 2018 USD, PPP, ρ = 1.42%)

SCCt =
βYt

Mpre
ξ0
︸︷︷︸

2.1%
︸ ︷︷ ︸

11
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(1− βσ)−1

]

1,1
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1.1
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0.54
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1,1
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4.3

= 30
$

tCO2
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The optimal carbon tax: (IMF 2018 USD, PPP, ρ = 1.42%)

SCCt =
βYt
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ξ0
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[
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]
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︸ ︷︷ ︸

1.1

σforc
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0.54

[
(1− βΦ)−1

]

1,1
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4.3

= 30
$

tCO2
.

A carbon cycle whose transition matrix Φ satisfies mass

conservation of carbon implies a factor (1− β)−1 ≈ 1

ρ
in the

closed form solution of the optimal carbon tax.
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The Social Cost of Carbon: Formula

The optimal carbon tax:
Drupp et al. (2018)’s expert survey ρ = 0.5% (median)

SCCt =
βYt

Mpre
ξ0
︸︷︷︸

2.1%
︸ ︷︷ ︸

✚✚11 12
$

tCO2

[
(1− βσ)−1

]

1,1
︸ ︷︷ ︸

✟✟1.1 1.3

σforc

︸ ︷︷ ︸

0.54

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

✟✟4.3 8.4

=✟✟❍❍3072
$

tCO

A carbon cycle whose transition matrix Φ satisfies mass

conservation of carbon implies a factor (1− β)−1 ≈ 1

ρ
in the

closed form solution of the optimal carbon tax.

At the pump: ✚✚26 to 63 cents/gallon.
Note the factor 8 from carbon cycle.
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A summary deterministic modeling

We can

solve IAM with DICE-style realism (and maybe a bit more)
in closed-form

My take of AIAMs under certainty:

We can gain a lot of insights, including quantitative
insights, about what matters how from the analytic
formulas

These can help and guide numeric modeling

AIAMs can help to reach out to general audience
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Uncertainty

Break with certainty equivalence.

Evaluating Uncertainty

1. Logarithmic utility is

Reasonable estimate for intertemporal substitution

Miserable estimate for risk aversion

2. Expected utility model is

unable to match high observed risk premia together with

low observed risk-free discount rate

Solution:

Epstein-Zin-Weil preferences

IES=1 (logarithmic), deterministic tradeoffs
General CRRA risk attitude

details

45 / 48



Intro CRP Formula Result Quantification Numerics & Learning Tipping Domino ACE Conclusions

Uncertainty

Break with certainty equivalence.

Evaluating Uncertainty

1. Logarithmic utility is

Reasonable estimate for intertemporal substitution

Miserable estimate for risk aversion

2. Expected utility model is

unable to match high observed risk premia together with

low observed risk-free discount rate

Solution:

Epstein-Zin-Weil preferences

IES=1 (logarithmic), deterministic tradeoffs
General CRRA risk attitude

details

45 / 48



Intro CRP Formula Result Quantification Numerics & Learning Tipping Domino ACE Conclusions

Uncertainty Models with closed-form solution

Example: Temperature uncertainty.
An autoregressive gamma process capturing uncertain response
of temperature to atmospheric CO2 concentrations.

(details)

Transient Climate Sensitivity (TCR)

0 1 2 3 4 5
 Temperature [C] 

0

0.2

0.4

0.6

 P
ro

ba
bi

lit
y 

[%
] 

TCR Distribution

IPCC 66%

ACE 66%

matches IPCC’s

66% probability
that TCR in in
[1C, 2.5C]

expected 1.8C

slight skew

46 / 48



Intro CRP Formula Result Quantification Numerics & Learning Tipping Domino ACE Conclusions

Autoregressive Gamma and Temperature Uncertainty

Under such climate sensitity uncertainty
Optimal carbon tax changes from the deterministic SCCdet to

SCCunc = SCCdet

(

1 +
h̄

σforc
θτ (·)

︸ ︷︷ ︸

13% (150%)

+
h̄

σforc
ǫ(·)

︸ ︷︷ ︸

12% (22%)

)

︸ ︷︷ ︸

≈1+25%≈1+172%

where

ǫ(·): direct risk effect (even under risk neutrality)

θ(·): risk aversion (interacting with risk)

Similar numeric result to Jensen & Traeger (2013/19) discussed earlier and
to Kelly & Tan (2015, JEEM)
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Time preference: Median response in Drupp et al.’s (2018,AEJ:Policy)
expert elicitation:

Reduce pure rate of time preference from ρ = 1.4% to ρ = 0.5%:

SCC ≈ 200 USD

tCO2

(or 1.75 USD per gallon)

reveals that the uncertain model is even more sensitive to time
preference than the deterministic model.

varying intrinsic risk aversion (α = 1 in calibration):
SCC ≈ 150 USD

tCO2

(α = 0.5) / SCC ≈ 300 USD

tCO2

(α = 1.25)
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Some Concluding Thoughts

risk premia quantitatively important (still a lot to be done)

std calibration: 25% premium for climate risk

can be MUCH higher under more sophisticated calibration

Deterministic SCC impact: carbon cycle >> temperature

Uncertainty: clim sens uncert >> carb flow uncert

discount rate even more important with fat-tails
Structural drivers:

damage convexity more than standard risk aversion and
prudence
disentangled=intrinsic aversion to risk matters a lot!
Tipping points or “smooth damages” somewhat similar
Ambiguous nature of uncertainty may not be as relevant
under rationality assumption about dealing with ambiguity

No support for wait and see because of uncertainty or
learning
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