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1. Introduction

Multi-crop farming involves managing cross-cropeets in a number of dimensions. Farmers often
practice crop rotation reflecting positive and rneganutrient and disease/pest effects from the
previous years’ production decisions. In the Damishtext, one example is that farmers typically
take account of first year nitrogen carry-over etfein crop rotation schemes. Another example is
that potatoes are not usually grown on the samdaianore than two consecutive years in order to
reduce the risk of disease (e.g. potato blight) pest attacks (e.g. potato stem borers). Following
potato production, other ‘cleaning’ crops suchaserare produced for 3-4 years. Changing the land
allocation often involves shifts between plots whiare cultivated with different crop rotation
schemes and the time delay before full implememnatiay be longer than a single rotation span.

Peak capacity constraints often generate othestgpeross-crop effects. For example, Danish
farmers typically prefer a mix of spring and wintops of different types in order to spread
sowing and harvesting seasons to reduce peak tapaitisation of labour and equipment. Such
cross-crop effects may in turn generate long amdptex land allocation reaction delays if optimal
cropping requires investment in new equipment. aRat effects are made more complex since
investments in machinery are often not made imntelgiabut at the time when it is optimal to
scrap old depreciated equipment. Finally, harvesldy and output prices cannot be predicted
exactly at the beginning of the growth season wthenand allocation decision is made and must
therefore be based on the farmer’s expectatiomeeS#xpectations adjust to changes in underlying
economic conditions, further delays in land allcmateactions may result.

Incorporating cross-crop linkages and dynamic dadjests makes for a challenging empirical
problem when farmers’ crop acreage allocation bielavs to be estimated. Ideally, estimation
should utilise a farm level dynamic setup whiclowl for adjustments in land allocation that
incorporate cross-crop and equipment utilisaticgtrigtions. However, in practice, the data required

for the estimation of such a model (a long micraglawith detailed information on crop level



inputs, outputs and land allocation) are seldonilave and thus other estimation strategies have
typically been applied.

Empirical applications which use duality theoryconnection with aggregate data are common
and may give a reasonable indication of parametgnitudes. For example, Guyomard, Baudry
and Carpentier (1996) estimate crop acreage aidocetsponse using aggregate annual time series,
while Plantnga et al. (2002), Coyle (1993a), Coy1®93b), Moore and Negri (1992), and
Lichtenberg (1989) estimate land allocation usiggragate panel data. A number of papers using
aggregated time series data have incorporated dgratjustment in one way or the other (see, e.g.
Coyle (1993b), Howard and Shumway (1988) and Eokgt984) for nice examples and Askari
and Commings (1977) for a comprehensive review aflier studies). While results vary
substantially between crops, countries and methoasy studies suggest the presence of sizable
time lags.

Some studies use micro cross-section data at the l&vel (e.g. Moore, Gollehon and Carey
(1994); Mythili (1992); and Weaver and Lass (19889))l estimation results are often interpreted as
long run effects. Short-run adjustment effects haeen estimated using micro-panels in a number
of studies (e.g. Coxhead and Demeke (2004); Mo Sckokai (1999); Lence and Hart (1997);
and Lansink and Peerlings (1996)). However, thesdels do not attempt to estimate dynamic
adjustment/inter-temporal effects. An exceptioMi®mas (2003), who estimates crop production
functions and the nitrogen carry-over coefficieotdifferent crops based on the assumption that
farmers take account of nitrogen carry over andpittential for reducing future fertilisation costs
that it entails. The estimated structural modebvedl for crop rotation schemes under the
assumption that these are driven by farmers whe thk dynamics of nitrogen carry over into
account when maximising profit. The resulting stmmal model makes it possible to simulate the
dynamic effects of various policies such as envirental policy aimed at reducing nitrogen loss

where nitrogen carry-over is the dynamic effegbimary concern.
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In this study, we develop and estimate a dynamidehof land allocation that takes account of a
number of major causes of land allocation lagseetgiions, adjustment costs, investment lags and
crop rotations. Our model is based on farmers’ dynaoptimisation behaviour and allows the
estimation of land allocation conditional on exgectrop gross margins. Our empirical estimation
is based on a long micro-panel with up to 11 anobakrvations per farm and with detailed crop
level data on acreage, output and variable inpet which makes it possible to calculate crop level
gross margins. The ambition of addressing all majgnamic effects rules out the structural
modelling of land allocation dynamics because ef dinrealistic requirements for data and model
complexity it would imply. Instead we estimate dueed relationship between crop rotation, peak
capacity effects and land allocation. Our empirestimates are based on GMM methods (Arellano
and Bond (1991) and Arellano and Bover (1995)) wrace applied to a system of dynamic land
allocation equations which takes the uncertainremment into account. To our knowledge, this is
the first dynamic micro-model of land allocationden uncertainty to be estimated on data from the
temperate climate zone that allows for crop rotatind other crop allocation lags.

We find substantial differences between short aydrun land allocation effects and also
substantial variation in the adjustment speedscést®ead with different crops. For rape and pea, we
find short-run land allocation elasticity with res to its own per hectare gross margin in therorde
of 0.25, while the corresponding long run elastigstin the order of 1.37. For winter crops such as
barley and wheat, the corresponding elasticitiesla®0 and 2.08 respectively, and for spring barley
0.97 and 2.49 respectively. Time lags vary substiyntbetween crops with first year effects
ranging from about 20% (for rape) to 50% (for wirtbarley and wheat) of long-run effects. Since
such estimates are absent in the literature, auiteemay be of interest in other European coustrie

and parts of North America that produce under singlimatic and economic conditidns

! When comparing studies of farm land allocatioroasrcountries and continents, it is important taare that in
addition to differences in climate and basic ecoicaronditions, there may be important differencethie applied
agricultural policies and environmental regulations

3



In the next section, we present the economic mtmtethe farmer’s optimisation problem. In
section 3, we describe the panel data set uséxiadtimation. In section 4, we derive the estimabl
equations and discuss the applied GMM estimatdng. rEsults are then presented in section 5,

whilst section 6 concludes.

2. An Economic Model of Land Allocation

There is a large amount of literature on agricaltunulti-crop production where there is an
important dividing line between models that assumpeit jointness across outputs and models that
assume non-jointness. The standard dual modelppgoach is to model agricultural production as

a multi-output production process, where inputjo&ss is assumed across outputs, and to estimate
a derived system of input demand and output sujypigtions (see, e.g. Heshmati and Kumbhakar
(1994), Fontein et al. (1994) for applications tmnm-panel data). Another line of work proposes a
non-joint production function with fixed, but alla@ble resources (e.g. land) providing the only
form of jointness (see, e.g. Shumway (1988) andrglo@ollehon and Carey (1994)).

Although the argument of non-jointness seems camwn for some inputs (e.g. fertiliser,
pesticides, sowing seed, tractor fuel, etc.), joiretness seems probable for others (e.g. labodr an
capital). In a short-run model, one might argud tha reasonable to treat capital and possibly
labour as fixed inputs. However, because typictllgre are important peak utilisation capacity
constraints around sowing and harvesting, jointsessns probable (i.e. if increasing production of
crop 1 will require capital and labour in a peakiqd then production of other crops must be

reduced).

In line with other studies we assume that inputshsas fertiliser, pesticides, sowing seed and
tractor fuel are non-joint in the production of fdient crops (conditional on the allocation of
cultivated land). Let the vecta®, :(Ql,ﬂz,...,ﬂj ,..,QJ) be composed al vectors with vector
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Q, indicating the amount of the different non-joinputs allocated to the production of cijojet

Y :(Yl,Yz,...,\j(,..,Y) denote the vector of crop outputs a@d a vector of stochastic variables

capturing random variations in climate and disgzest/attacks and let; indicate the amount of

land allocated to crop We assume the following production functionstfeJ crops:

Y, = f (%,@)Li for all j 1)

J

where crop production is homogenous in allocatedl IeL;) and non-joint inputs ;). The land

constraint is:

J
Z L <L (2)

However, instead of letting jointness be generdtealigh the land constraint alone, we assume true
jointness for an aggregated indicatoyof quasi-fixed labour and capital inputs suchmahinery
in the production of ‘cultivated’ land for differenrops. Let vectot =(L,,L,,....L;,..L,_, ) denote

the amount of cultivated land allocated to eachheffirstJ-1 crops and L' the total amount of

land available.

We define:

0=F(L,L'™,2Z) (3)



as the production frontier which describes theti@tahip between the vector of ‘cultivated’ land
produced using available land and quasi-fixed lalamal capital input8 Cultivating a given land area
for different crops requires different levels anchihgs of capital and labour utilisation over the
growing season, depending on when and how crops@sm, fertilised, sprayed with pesticides,
harvested and stubbles ploughed. For example, congbwinter and spring crops may require a
lower level of available capital and labour capatitan if only spring crops are grown. Further,pcro

rotation schemes applied by farmers also implyiagins on land substitution between crops. These
constraints on the land allocated to different srape captured in thE(.) function which is assumed
to be quasi-concave to ensure uniqueness so thdbllbwing relationship is implicitly defined by
(3):

Z=F(L,L (4)
Given this, the farmer’s long run maximisation gesb becomes (assuming full adjustment of all

guasi-fixed capital and labour inputs):

L M,gl),(...gjn = E{jzl[ﬁj fj(Qj/ H,@)—PQ'QJ, / |.‘.} |1.— P HL, IE“)}

" (®)
st. L, =L"->'L,
j=1

whereP” ,P®and P? are the input-output prices, and expectationgaken over the joint distribu-

tions of ®,P',P%and P? held by the farmer. This maximisation problem &@nsolved in two

separate steps. The cultivation intensity problesoived by deriving first order conditions for keac

Q.
non-joint input separately by differentiating thadrangian with respect te, :T‘. Given the
j

J-1
2 Note that land allocation to crdds given residually from (2) ag, = L —z L.
j=1
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optimal combination of the non-joint inputs’}, we define the optimal per hectare expected gross

margin Pl. = EO’PYVPQ

[PY" f(w,,0)-P? coj} and the expected capital/labour prices
P¥ =E [PZ} Assuming independence of tHe’ distribution and substituting #®, P* and

J-1
L, =L =) L,, the land allocation problem becomes:
j=1

Max =R +3 (R - B) L - P AL, &) ©)

Livenbya =

Without loss of generality, this can be formulatederms of land shareks=L /L and profit per
unit land 7=/ L by defining the functioh

Al L) = F(IL, L)/ L (7)
By inserting (7) and dividing by, the farmers’ long-run maximisation problem (6etuivalent

to choosing land shares so as to maximise profilaoel unit:

Maxm= P +

J-1
lsed g =1

(F-B)|- P Al £ ()

Let |I" denote the solution vector to (8) (remembering txap J is not included inl but is

residually given by the land constraint). Farmeesable to adjust tas” immediately from growing
season to growing season, whereas adjustment tovaisl only possible with a lag covering
several growing seasons. Though the gross mar@fn)sa(nd the capital/labour cost®€) that the

farmer expects will apply in optimum are not obsehin our data, we do observe realised land

allocations, crop-specific realised gross margind @ndicators of realised capital/labour costs.

®Note thatA(.) depends orl"* because we dootwant to assume homogeneity Bf(.) which would have ruled out
scale effects.



Therefore, this formulation of the farmer’s problaitows us to utilise the available data efficigntl

by focusing on the farmer’s slow adjustment togbkition of the land allocation problem (8).

3. The data

The estimations are based on a panel data setdewb\iy Landbrugets Radgivningscenter (The
Danish Agricultural Advisory Centre). The panelaaet is unbalanced and covers twelve years
(1980 to 1991) with, on average, 1,350 farms beapgesented each year.

Data are gathered through a voluntary programmetwinvolves intensive consultations, which
is run by the Danish Farm Associations Extensiorvige. Although it is not a random sample,
participating farmera priori are motivated and have an incentive to providé kjgglity data.

For each farm, data include detailed annual acsonfrthe variable costs for each crop (and for
each branch of animal husbandry) along with cooedmg accounts for quantitative flows of the
most relevant inputs and outputs (e.qg. fertilipessticides, seed, crop yield, etc.). This allowsous
calculate realised gross margins which are defasethcome net of variable non-joint costs at the
crop level. To avoid estimation intricacies of trendling of corner solutions (see, e.g. Weaver and
Lass (1989)), we selected farms that produced adlathed crops for at least five consecutive years.
To sustain a reasonable number of farms in the pamgl, we base our model on three crop
aggregates: (i) winter wheat, winter rye and witt@rley; (ii) spring rape and pea; (iii) spring
barley. The aggregates are chosen so that crape same aggregate hold the same position in the
crop rotation systems typically used by Danish frsnin addition to the required production,
some of the selected farms also produce cropsnhtded in the three groups, while others also
produce pigs. For swine producers, pig productypically dominates value added and does not
depend on the growth of fodder crops. Hence, thienaplevel of pig production is probably not

substantially influenced by land allocation dearsioFurthermore, a substantial part of land
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allocated to ‘other crops’ is used to grow sugatfepotatoes and specialty crops typically on more
lucrative long-range contracts. The existence ohswontracts makes it less likely that optimal land
allocation to ‘other crops’ will be substantiallyfluenced by changes in the gross margins of the
crops on which we focus. Thus, these productiogsliare not modelled, but they are included as
conditioning variables.

Given these criteria, the data contain 226 farnthénselected panels covering 1980-1991 with
1,379 observations in total. The farms in the panelobserved for at least 5 and up to 11 years
with more than half of the farms observed for 6rgea more (the structure of the panel is reported
in table 1). Per hectare gross margins are catifar each crop for each farm for each year as
income from crops minus the following variable cel®ments: pesticides, fertiliser, manure,
phosphorus, calcium, sowing seed, energy for crgipg, tying string, machine station services
and tractor fuel. We calculate single price indifiescapital and labour services for each farmgisin
the costs of labour and capital for each farm, el & average farmhand wages and list prices for
capital in Denmark.

Table 2 presents means and standard deviatiotenishares, gross margins and other key
variables. Note that total land on average amowntd5.4 hectares, while less than 25 hectares are
allocated to the other crops. Thus, farms includdatie estimation utilise about 80 percent of the
total land for crops covered by our model. Pig picitbn averages 7.8 tons per farm. Figure 1
reports the average land shares, gross marginsaguital and labour price index over time. Note
that the average spring barley land share decreagédhe mid-1980s, while the average land
share of winter crops increased. During this peribd profitability of winter crops increased
because of new pesticides which are more effeetij@gnst pest/disease attacks. However, gross
margins are also affected by variations in climaéather conditions; in particular the large
decreases in gross margins between 1985 and 19@7jpwmnarily caused by low yields due to bad

weather conditions in the growing and harvestirageas.
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4. Estimation

We estimate the farmers’ second stage land allmtairoblem as formulated in (6). The model
includes farms that, in addition to the three miadklcrop aggregates, also grow other crops
(mainly potatoes and sugar beets on long-term actsy or have pig production. For these farms,

land allocation is conditional on the level of teesdditional outputs. Thus, from (8) we have a
single valued A(.) = A(l, L'*,c")where ¢ is a vector of the two conditioning variables (pig

production in tons and land cultivated with otheops in hectares) that the farmer expects will
apply in long-run optimurfi. This formulation also applies to core crop farmbkich are only

growing the three crop groups (conditioning varghih this case have the value zero).
. . . 1 - ~ .
We assume a quadratic functional form fagl, *,c’) =1 'a+§I '‘A'l +1'a” +1'A'c’ so that

the J-1first order conditions of the constrained maxiniaiproblem in (8) beconie

|* =b+ Bp* +6Lt0t+éc* (9)

wnere b=[-a’a].p=[-A"]5=[-'a]8=[-a'A] ana 5= 2N

vectors being 2x1 and matrices 2x2. Likéhe p -vector does not have an element corresponding

to crop 3.B is symmetric (by the standard differentiability pesties of the profit function and
derived demands), homogeneity is maintained by absation so the eliminated crop 3 equation is

obtained from residual calculation.

* In the following, we use standard conventionsmatrices, vectors and scalars, i.e. matrix nameslarays in bold
capitals, vectors in bold non-capitals and scafaren-bold.

® Differentiating (8) after inserting the quadraiimctional form gives:
[(Ff -R)

(R -R)
| =[-A"a]+[-A"]p +[-ATa|L" +[ -ATA"|C

} P?@+A'l +al+A'C)=0 -
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Equation (9) defines long run optimal land allomatas a function of adjusted gross margins and
conditioning variables expected by the farmer telapn the long run. To allow for slow
adjustment to the optimal land allocatibrdefined in (9), we assume a partial adjustmentgssc
ie.

=1, +V( -1_)+e (10)

where g is a 2x1 vector of stochastic error terms ahds a 2x2 diagonal matrix of adjustment

speed parameters with values between zero and 1.

At timet, the farmer holds an expectation of the vectadjfisted gross margins that will apply
in the long-run optimum §, wheret indicates that this is the expectation held byfénmer at time

t). We assume that the current and previous yeagsised adjusted gross margins in a linear

combination is an unbiased (though uncertain) midicof this expectation, i.e. that:

p. =Dp +Dp,, +q (11)

where p, is the vector of adjusted gross margins realigetinee t, D andD are 2x2 diagonal

matrices of parameters whele=| —Dand g, is a 2x1 vector of stochastic error terngs,, is the

latest observed adjusted gross margin when pétartt allocations are decided at the beginning of

the growing season and so the indicator allowssfatic expectations. The inclusion @f allows

for some element of quasi-rational expectationpredictive ability (see, e.g. Burton and Love,

1996) since p, is not observed at the time of land allocationténthat theD parameters are

estimated and s® may be zero). Given our data constraints, thenasdiexpectations model does

not seem unduly restrictive.
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At time t, the farmer also knows or predicts teeter of conditioning variables that will apply in
the long-run optimum. Here, we again assume thgacttinrent and previous year’s realised values in
a linear combination is an unbiased (though unegriadicator of this prediction/expectation, i.e.

that:

C: = GCt + C_;Ct—l + Wt (12)

wherec, is the vector of conditioning variables realisedimet, G, G are 2x2 diagonal matrices
of parameters andav, is a 2x1 vector stochastic error term. Equatid?) @lows for the sluggish
adjustment of optimal values of conditioning vakegbby letting the indicator depend on both their
current level and growth rate.

Inserting (9), (11) and (12) in (10) gives the &iipn system to be estimated for each farm:

|, =[VBD] p, +[VBD ] p., +[ VB | " +[VBG ] +[VBG |c., +[1 -V]I., +y, 13)

where u, =[Vb]+¢ -VBq, ~VBw, is a 2x1 vector of error terms and the square rpaeses

indicate the parameters to be estimated.

In estimation, there is a set of equations (18)efich farm in the panel. We allow the vector of

constants[Vb] to be farm specific, while all other parameters assumed to be common for all

farms in the sample. However, a number of potebiad problems must be taken into account:
First, since we condition on interior solutions fatr least 5 consecutive years, one might be

concerned that this sample selection causes eginmbias. This does present a potential bias

problem since, e.g. small farms (with only a fewtplthat are efficient to farm separately) and

farms with a small optimal average land allocatiorcertain crops will have years with zero crop
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growth more often because of crop rotation ruleg & seem to have this type of a selection
problem since mainly large farms are included i émalysis. Addressing this problem through a
standard sample selection approach, such as Hecki8@8), would imply estimation of a vector
of time invariant, but farm and crop-specific Miliatios that should be added to the equations of
(13). Controlling for unobserved time invariant éreigeneity in this way would ensure consistent
estimates for the selected sample. Of course, tieehwould then only apply to the selected panel
farms and not to the whole population of Danisimiens.

Second, the gross margin covariaggsand p,_; and the conditioning variables andc,_; are
components of errored indicators and are therefoneelated withu, requiring instrumentation.

Third, the inclusion of the lagged dependant \deian (13) may also cause estimation bias if

error terms are serially correlated also requimggrumentation.

To take account of these three potential bias problefficiently, the unrestricted system (13) is
estimated using the GMM-estimator suggested byl@wel and Bover (1995) and Blundell and
Bond (1998). In the following, we refer to thisiestor as the GMM-diflev estimator

Even though the GMM-diflev estimator is derived feingle equation models, it is easily
generalised to handle multiple equation models @tipy the cross equation correlation to gain
more efficiency. The standard econometric apprdachnear dynamic panel data models is to first
difference the equations to remove the unobsereechgnent heterogeneity, which solves the first
potential bias problem. Lagged levels of the catas as instruments for the predetermined or

endogenous covariates solve the second and thiedfed bias problems.

6 The estimator uses instruments in levels fot fiiferenced endogenous variables and instrumariisst differences
for endogenous variables in levels.
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The first and second lag may be correlated withetilner components in first differences so we

use earlier lags. Each instrument,, for the covariates in the equations of (13) nuadtsfy the

following two moment restrictions for the equatsystem in first differences of each farm:

E[m_(u-u,)]=0 for s=23 t=45.T (14)

In a conventional 2SLS framework, the instrument, can be the lagged levels of the covariates

or the lagged differences of the covariates, sinbdaan approach suggested by Anderson and Hsiao
(1982). However, we can increase efficiency by eitiplg the additional moment restrictions that
are given in equation (13), i.e. by also using lkegsier than the third as instruments and by uaing

weight matrix that takes into account thsd, follow MA(1)-processes, ifu, are i.i.d. or thatu,

might be heteroscedastic. This can be achievedhbyGMM estimator for single equations
suggested by Arellano and Bover (1995) and so ¢ktgnator may be viewed as a system of
equations, one for each year, where the numbenstfuments increases each year. Thus, in the
equation fort=4, observations foi=1 may be used as instruments, whiletfds, observations for
botht=1 andt=2 may be used.

Greater efficiency can be achieved by also usiegetijuations in levels with lagged differences
as instruments with the following two moment retions for the equation system in levels of each

farm (see Arellano and Bover (1995) and Blundetl Bond (1998)):

E[Am_u,]=0 fors= 2; t= 4,5.T (15)

14



where Am,_is the lagged first differences of a covariate,cihnay be used as an instrument. Note

that since we only use instruments in first diffexes with the levels equations, we do not
reintroduce selection bias caused by the omittdts vétios.

We use two types of weight matrices for the GMMreators. One weight matrix takes account
of the MA(1) structure of the first differenced widhances and assumes no cross equation
correlation and homoscedasticity. This estimatorlwa estimated in one step and is thus termed the
one-step GMM estimator. The other weight matrixcansistent under heteroscedasticity and
exploits all the cross-equation correlation bothwaen disturbances of the same lag and between
different lagged disturbances. This estimator ubesresiduals from the one-step estimator to
calculate the heteroscedasticity and cross-equathorelation consistent weight matrix after the
same principle as in White (1980). The estimataralkeulated in two steps and is thus termed the
two-step GMM estimator. Even though the two-step NbMstimator in theory is more efficient,
Monte Carlo studies by Arellano and Bond (1991)idate that the one step estimate of the
covariance matrix and thus statistical inferencene reliable, so we report results from both
estimators.

As instruments for the equations in differences,use the gross margins and the conditioning
variables in third and higher lagged levels. Alse, use the land shares in third and higher lagged
levels. For the equations in levels, we use thesmbies in second and higher lagged differences.
Total land is instrumented with itself in both tgpef equations. As a general test of the validity
(exogeneity) of the chosen set of instruments agd,lwe apply the Sargan test of over-identifying
restrictions for correlation between the residwald the instruments (Arellano and Bond (1991)).
We also test for second order serial correlatiemfed M2) as a specific indicator of the validify o
the chosen instrument lag structure (also see a@reland Bond (1991)). If the M2 test provides
evidence of second order serial correlation infits¢ differenced residuals, it indicates endoggnei
of the third lag level in the difference equati@r so, e.g. indicates that farmer expectations are
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based on earlier lags than assumed in our modw®ll¥;i a specific check of the modelled dynamics
(the important lagged dependent variable parametgrpossible by estimating indicators of the
upper and lower bounds on the true parameter valregdicator of the lower bounds emits from
the within groups transformed model using the segiyiunrelated regression estimator, while
treating all right-hand side variables as exogenduss estimator is downward biased because the
lagged dependent variable is negatively correlatgt the error term. The lagged dependent
variable parameter estimated in the dynamic madkhiels is an indicator of the upper bound. This
estimator is upwards biased because the laggedhdepivariable is positively correlated with
unobserved permanent heterogeneity that is dummiedhe error term. However, in our case, the
estimated bounds may also be affected by biaswtleag way' because of the measurement error
components in the error term and so should nobteegreted rigorously.

A number of other tests and checks of the estidhatedel can be derived. We expect that the

parameters to the crops own gross margin will be sitpe

(0<[vBD],,,0<|VvBD| ,0<[VBD],,,0<[VBD]  and that the parameters to the lagged land

2,27
shares will be between 0 and 1 @e&[l -V]  <1,0<[I -V],,<1). Itis also clear from (13)

that two common factor restrictions:

[VBD]l,i /[VB[_)]M = [VBD]Zi /[VB[_)Lj for i=1,2 (16)

should apply to the estimated systdfmally, the theoretical model implies symmetryBfvhich

combined with theD=1-D constraint emits the following restriction on thestimated

parameters:

([VBD]1,2 + [VB[_)l,z)/[l _V]1,1 = ([VBD] 2a”t [VBISL,l)/[ ! _V] 2,; (17)
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which should also apply. The parameter restrict{d@® and (17) are implemented and tested using

the Minimum Distance Estimator (e.g. Greene (2000))

5. Results
In the first and second columns of table 3, we reparameters, standard errors, Sargan and M2
correlation tests of system (13) estimated wittrestrictions (16) and (17) using the one and two-
step GMM estimator. The Sargan test of overidemifyrestrictions is accepted and the M2 test
statistic indicates no evidence of second ordealseorrelation. Therefore, the specification tests
do not indicate endogeneity problems with the chasat of instrument variables and lags. We see
that the estimated parameters are almost equéhdarwo estimators and that many are significant.
Specifically, parameters to the crops own grossgmarare typically significant and with the
expected sign. Some of the conditioning variablampeters are significant which indicates that the
estimated system is inseparable from other farndymtion and that conditioning is necessary.
Finally, both parameters to the lagged land shénescating the size of the adjustment time lag)
are highly significant and within the required [Obund. The winter crop parameter is also well
within the estimated upper and lower bound indicatavhile the corresponding rape parameter
exceeds the upper bound slightly. However, the dandicators are inaccurate in models with
more than one measurement error and so this doagem worrying

Since the parameters emitted by the two estimai@salmost identical, but inference from the
one step estimator is more reliable (as noted gboxeebase our tests of restrictions on this model.

The parameter estimates and restriction test whgrosing common factor restrictions (16) and

" The estimated bounds on the parameter for thesthgdnter crop land shares are [0.21;84] and thmts on the rape
and pea land shares are [1.6E-3;0.79].
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when imposing both the common factor and the coetbiexpectation and symmetry restriction
(17) are reported in columns 3 and 4 of table Speetively. We see that both the common factor
restrictions and the joint common factors and etqigmm and symmetry restrictions are accepted.
Consistent with this, most of the significant esties of the restricted models are similar to the
corresponding estimates of the unrestricted mddetonclusion, the model seems well specified,
soundly estimated and consistent with the undeglyfreory.

In table 4 columns 1 to 3, we present short and loin land allocation elasticities derived from

the estimated parameters of the three models. Adgrg proportions J(—[I —V]i]i) indicate the

proportion of the long run land allocation effentplemented each year (e.g. if the adjustment

proportion is 1 we have immediate adjustment tanoytn). The short run elasticities are defined as

W Rl B rvep] +[veB B BB foriz12 and
,%‘dpn dqt_ld(a/l?) oz veol, [ven) g frist2an

0=1,2,3 reflecting the first year effect on landrghaof a permanent increase in the gross margin of
crop ¢°. The long run elasticity is found by dividing tiskort run elasticity by the adjustment
proportion and this elasticity reflects the lantbedtion effect after full adjustmehtElasticities are
evaluated at the sample mean gross margins andgskards and the asymptotic standard errors are

derived using the delta method.

8 Note that by the definition op below equation eHp; / (R / B:) equals 1 for (,q)=(1,1) and (2,2), equals 0
for (j,q)=(1,2) and (2,1), and equals -1 for (j,0:3) and (2,3).

® For the numeraire crop, 3 short run elasticitiéth wespect to gross marginare calculated residually (using the land

share adding up condition) as:
->.>.(vBD], +[vBD] )

_zz(dht di; ) dpy R/ B dpy R/ R
i<3j<3 dp]t dHt—l C( E)t/ E)t ét i<3j<3 ' b d(%tlpzt) bt

| .  lvep], +[veD] dpjt R/ B
while the corresponding long run e|aStICIty'ISZ Z
i<3j<3 1“[' _V]i,i d( zt) l3t
adjustment proportion for the numeraire crop camthe found by dividing the derived short run étitstby the
derived long run elasticity.

. The average
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First, we note that the estimated adjustment ptapw vary substantially between crops

from 0.48 for winter crops to 0.18 for spring ragel peas. The difference between these estimates

is highly significant with the constant time lagsstriction [I =V] , =[1 -V], Jbeing rejected

strongly. The corresponding adjustment proporti@t §pring barley is 0.3% Thus, the
adjustments for winter crops and spring barleystoer and very slow for rape and pea. Overall this
indicates that crop rotation and other restrictiomske fast adjustment to changes in the current
gross margins difficult.

The elasticities are almost equal across the rmoddl the own gross margin elasticities are
significant across all the models with the exceptid the long run own gross margin elasticity for
rape and pea in the model with all restrictionsasgd. For all models, the long run own gross
margin winter crops elasticity is about 2 and thersrun elasticity is about 1, while for spring
barley it is of about the same magnitude (abouta?dd 1.0). For rape and pea, the long run and
short run elasticities exceed 2.3 and 0.4 in thestricted and common factor restricted models,
while dropping by about 40% in the most restricraddel. Thus, short run elasticities vary
substantially between crops, while long run el#sts are more aligned.

Turning to the cross gross margin results, we tkaé most crops are substitutes. However,
winter crops and rape and pea may be complemelnts, The long run rape and pea elasticity, with
respect to the winter crops gross margin, is Otdthe winter crops elasticity, with respect to the
rape and pea gross margin, is 0.21 — both significethe model with all restrictions imposed.

Figure 2 reports the development in the cumuldsed share elasticity with respect to a
permanent rise in the own gross margin at year &.98k that, already in year 2, the cumulated
elasticities deviate a lot from short run elasest By year 6, winter crops have almost fully

adjusted. Adjustment for rape and pea takes iotter of 15-20 years.

1 The estimate is derived from the short run and knm spring barley gross margin effects on thinggarley land
share.
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Since data limitations in some cases rule out 8tegnation of dynamic models, it may be of
interest to compare the results from the dynamidehestimated here with a corresponding static

model estimated on the same data set. We haveatstima static version of the model with instant

adjustment to the optimal land allocation systere. (setting[I -V]  =0][I -V],,=0). The

estimated elasticities are reported in table 4umools 4 to 6 and the parameter estimates are
presented in the appendix (table Al). As expedpdgification tests indicate misspecification (see
column 2 of table Al). It is, however, notable ttte gross margin short run elasticities in thécsta
model are similar to the corresponding short rastatities derived from the dynamic model (see
table 4). Thus, even though misspecified, it sedmas a static model is able to recover elasticity
estimates that are close to the ‘true’ short rastadities in our data set. In particular, this leggoto

the own gross margin elasticities. However, withémbwledge of the adjustment lags that
characterise the farmers in question, it may Béldifficult to use these estimates for the evabuat

of policy or price scenarios. This is illustrated figure 2, where we see that cumulative land
allocation elasticities after just 2-3 years diffigra factor 2 from the first year short run elaitigs

that may be recovered by a static model. Furtheis notable that because of differences in
adjustment speeds, short run elasticities do net @we an accurate picture of ratios between crop

elasticities after a few years. After 3 years, soat®s have changed by about a factor 2.

6. Conclusion

Using a long micro-panel with crop level data omeage and gross margins, we estimated a
dynamic model of land allocation that takes accairdll the major causes of land allocation lags
(expectations adjustment, investment lags and wtgiion because of pest/disease considerations
and nutrient carry over). The identifying assumpsiodo not seem overly restrictive and the

empirical model seems soundly estimated and ca@msistith the underlying theory.
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We find substantial differences between short and) Irun land allocation effects and also
substantial differences in the adjustment speetitma&ted for different crops. For rape and pea, we
find short run land allocation elasticity with regp to its own gross margin in the order of 0.25,
while the corresponding long run elasticity is I torder of 1.4. For winter crops, such as barley
and wheat, the corresponding elasticities are Ad2al respectively, while for spring barley they
are 1.0 and 2.5 respectively. Time lags vary sulisiéy between crops with first year effects
ranging from 18% (for rape) to 48% (for winter legrland wheat) of long run effects.

This suggests that taking long run effects and tiags into account may be crucial when
estimating and analysing policy effects on landation behaviour. It also suggests that even if a
static model is able to recover short run (firsiyeslasticity estimates (as is the case in oua dat
— to some extent), such estimates should be ustbdgneat caution for policy and price scenario

evaluations since cumulative elasticity levels eattbs changed substantially after just 2-3 years.
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Table 1a. Panel Structure

Years Number of firms Number of observations
5 103 515
G 53 318
T 38 266
8 15 120
9 11 99
10 5 50
11 1 11

226 1379
Table 1b. Means and Standard Deviations

Mean std min MA&x

Year 198526 277 1930.00 1991.00
Winter crop land share 042 0.18 0.01 0.87
Spring barley land share 0.39 017 0.04 092
Rape and pea land share 0.19 0.08 0.02 0.63
Winter crop gross margin 671404 2069.36 27.14 1278417
Spring barley gross margin 543312 1649.79 279.59 1145722
Rape and pea gross margin 597728 2396.00 -2476.00 1696276
Cultivated land with other crops (hectares) 2403 3072 0.00 19540
Pigs 7.82 9.90 0.00 81.80
Total land (hectares)* 9138 7799 11.20 427.00
Capital and labour index 14891 2221 100.00 193.67

* Total land is the total of land cultivated with winter crops, spring barley, rape and pea
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Figure 1: AVERAGE LAND SHARES, UNDEFLATED GROSS
MARGINS AND CAPITAL AND LABOUR PRICE INDEX OVER
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Table 2, Parameter Estimates Dynamze Model

Unrestricted model Common Factor Model! Combined Model!
Winter Crops Equation: One step Thwo step One step One step
Relative winter crop gross margin 1.8 E-5** (8.7 E-6) 1.7 E-5*** (6.3 E-6) 1.7 E-5** (B.6 E-6) 17 E-5** (B4 E-3)
Relatwe winter crop gross margia
(lagged) 6.9 E-5** (8.7 E-6) T1E-57** (28E-6) 6.6 E-5** (7.9 E-6)° 69 E-5**= (T4E-6)2
Relative rape & pea gross margin -12E-5 (8.8 E-6) -1.5 E-5*** (2.6 E-G} 47E6 (44E-8) 93E-6" (44E-6)
Relative tape & pea gross margin
(lagged) LB E-5* (BT E-§) 1.7 E-5%* 22 E-6) 22E-5%* (T8 E-6) 1.9 E-5%* (6.5 E-6)
Cultivated land with other crops 39 E-3%* (1.0 E-3) 39 E-3%* (18E-3) 40 E-3*** (1.0 E-3) 40 E-3**(1L.0E-3)
Cultivated land with other crops
(lagged) -lBEE4(12E-3) S3T7E4(2TES) -29E-3 (12E-3) -29E4 (12E-3
Pigs G2E423E-3) -12E-3" (67 E4 -29E-53 (23E-3) 39E4 (22E-3)
Pigs (lagged) T4E-3*" (24 E-3) BOE3™*(T6EH4) T2E-3%** (24 E-3) 6.9 E-37** (24 E-5
Total land 2IE42ZTE4 -1BE-47* 59 E-3) -22E4 (27E-3) -20E4 (ZTE-4)
Lagged winter crop land share 33E-1"=(35E-2) 33E-1"*(15E-2) 51 E-1"* (34E-2) 5.2E-1"* (54E-2)
Rape and Pea Equation
Relative winter crop gross macgin -L3E-6 (42E-6) -L3E-6(14E-G) -L3E6 (LG6E-§) T1LE7T (34E-T
Relative winter crop gross macgn
(lagged) -6.9 E-6 (5.6 E-§) -T4 E-6"** (1.6 E-6) -5.9E-6 (5.1 E-§) 30E-6* (LGE-G)
Relative rape & pea gross margin -3.0E-6 (3.5 E-6) -19E-6 (1.4 E-G) -3.3E-6 (48E-6) -L1 E-5%* (3.TE-6)
Relative rape & pea gross margin
(lagged) 26 E-5*** (48 E0) 24 E-53** (1.2 E-6) 25 E-3*** (45 E-6)° 23 E-5** (42 E6)2
Cultivated land with other crops 43E4(6.6E-4) 51 E-47* (14 E-4) “44E4 (64E4 -5.2E4 (64E-4
Cultivated land with other crops
(lagged) 53E4{64E4) S30E-4* (IBE4 -5.6E-4 (6.3E4 -44E-4 (6.IE-4)
Pigs 32E4(10E-3) 31E4(28E4 24E-5 (9BE4 98E5 (98E-4
Pigs (lagged) H3IES(13E-3) 28E-4{31E4) TQE-5 (l3E-3) 21E5 (13E-3)
Total land 48 E-4%= (1 4E-4) 43E4"=* (32 E-5) 49 E-4* (14 E4) 43E4==* (13E-4
Lagged rape & pea land share 81E-1== {73 E-2) B4 E-17* (1.6 E-2) BIE-1¥** (T3 E-Z) B2E- 1" (T3 E-2)2
Sarg 188 (178) p=0.29
ALz 14p=016 l4p=015
Min Zl 0.9 (2) p=0.62 4.2 (3) p=034

t Minimum Chi Square Estimates.  Asymptotic standard error derived using the delta method.

* indicates that the parameter 1s significant at a 10% level. ** indicates that the parameter 1s significant at a 5% level.

*=#+ indicates that the parameter is significant at a 1% level
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Table 3. Elasticities Dynamic/Statie Model

Dynamic Model Static Model
Winter Crops Rape and Pea Spring Bardey Winter Crops Rape and Pea Spring Basley
Mean Gross Margin
Short Bnn
Winter 1.020+** (0.122) 0.065 (0.146) -0.885%* (0.124) 0.964*** (0.195) 0.350% (0.203) -1.108%=* [0.210)
crops Qoad* 0115} O.I81T* {@.0582) 84 @111} QEsF @17g) | 0209 @113 L.883" {.153)
0,905+ (),118) 0.101** (0.046) -0.901%** ((.101) 006244 (0,177) 0.039 (0.034) -0.815%#* (0.153)
Rape -0.204 (0.166) 0.495%** (0.157) -0:288* (0.130) 0038 (0.191) 0.435** (0.197) 0427 (0.177)
and pea 0.180 0.158) Q4250w @147) Q24T TS} 128 (@L157) Q357 . 198) D248 (0.133)
0.089* (0.045) 0.245%* (0.104) -0.208%* (0.110) | 0.090 (0.077) 0.075 (0.064) -0.141 (0.120)
Spring -0.838%+ (0.144) -0.284* (0.146) 0.954%+ (0.128) -0.915%* (0.240) -0.530°* (0.249 1,225 (0.254)
barley LLET 70 732) L I5G¥* 0 125) 0.959%% 0 121) .7 agne gy §73) -0.369% (0.200) 0.934%%% @ 188)
-0.970%%% (0.115) | -0.205%#* (0.079) 0.972%%% (.117) A0.936%+* (0.169) | -0.070 (0.060) 0.822%* ({().169)
Long Run 2136%+ [0.386) 0.137 (0.302) -1.855% (0.309)
Winter 1.950™ @ 341) O.371%* @ 153) -1 942008 (g 207}
crops 2.084%¢* (0.3406) 02104+ (0.093) -LEBO** (0.200)
Rape -1.079 (1.023) 26377 (1.350) -1.523* (0.866)
and pea L9858 (1.009) 2330% (1.272) -1LF1E* {0.793)
0.489%* (0.228) 1367 (0.922) -L.640 (1.326)
Spring -1.505%* (0.622) -1.311* (0.694 2411%** (0.513)
barley -1.400%* [0.387) -1.392% [668) 24007 D404)
-21el%#* (0.375) | -0.810 (0.627) ZARTHERE (0.493)
Admstment
proportion! | 0.479 0.182 0.391

Note: Asymptotic standard errors in brackets are derived using the delta method. In plain, unrestricted estimates. Common

factor restricted estimates in italics. In bold, restricted estimates derived from the common factor and the combined,

D =1—D and symmetry restriction. ! Model with all restrictions imposed

* indicates that the parameter is significant at a 10% level ** indicates that the parameter is significant at a 5% level.

*** indicates that the parameter 1s significant at a 1% level
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Figure 2: ADJUSTMENT OF LAND SHARES TO CHANGES IN OWN GROSS MARGINS
OVER TIME
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INote: Each graph shows the adjustment of a land share to a change in its own gross margin over time. For example, the

spring barley graph shows the percentage change in the spring barley land share induced by a one percent change in the

spring barley gross margin.
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